On some recent trends in modelling of contact fatigue and wear in rail
Résumé
Specific numerical methods for the computational analysis of damage induced in rail by repeated rolling are presented. The calculations of mechanical stabilized states (shakedown, ratchetting) of rail-like structures subjected to moving contact loads are performed using the “stationary methods”. An association of 2-D finite element method, Fourier expansion in the longitudinal direction of the rail and steady-state assumption reduces the computational cost of such procedures. These methods constitute the key for the quantitative prediction of fatigue. Three types of damage (low-, high-cycle fatigue and damage) are encountered. Special attention to high-cycle fatigue is paid, through the use of Dang Van multi-axial fatigue criterion. The 3-D simulations of rolling contact and investigation of rail high-cycle fatigue illustrate the applicability of the methodology.
Domaines
Mécanique [physics.med-ph]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...