Nonparametric adaptive estimation for integrated diffusions. - Archive ouverte HAL
Article Dans Une Revue Stochastic Processes and their Applications Année : 2009

Nonparametric adaptive estimation for integrated diffusions.

Fabienne Comte
Valentine Genon-Catalot
  • Fonction : Auteur
  • PersonId : 836340
Yves Rozenholc

Résumé

We consider here nonparametric estimation for integrated diffusion processes. Let $(V_t)$ be a stationary and $\beta$-mixing diffusion with unknown drift and diffusion coefficient. The integrated process $X_t= \int_0^{t} V_s ds$ is observed at discrete times with regular sampling interval $\Delta$. For both the drift function and the diffusion coefficient of the unobserved diffusion $(V_t)$, we propose nonparametric estimators based on a penalized least square approach. Estimators are chosen among a collection of functions belonging to a finite dimensional space selected by an automatic data-driven method. We derive non asymptotic risk bounds for the estimators. Interpreting these bounds through the asymptotic framework of high frequency data, we show that our estimators reach the minimax optimal rates of convergence. The algorithms of estimation are implemented for several examples of diffusion models that can be exactly simulated.
Fichier principal
Vignette du fichier
ComteGenonRozenIntDiffusion.pdf (6.23 Mo) Télécharger le fichier

Dates et versions

hal-00110510 , version 1 (30-10-2006)

Identifiants

Citer

Fabienne Comte, Valentine Genon-Catalot, Yves Rozenholc. Nonparametric adaptive estimation for integrated diffusions.. Stochastic Processes and their Applications, 2009, 119 (3), pp.811-834. ⟨10.1016/j.spa.2008.04.009⟩. ⟨hal-00110510⟩
207 Consultations
106 Téléchargements

Altmetric

Partager

More