Katz's middle convolution algorithm - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2006

Katz's middle convolution algorithm

Carlos Simpson

Résumé

This is an expository account of Katz's middle convolution operation on local systems over ${\bf P}^1-\{ q_1,\ldots , q_n\}$. We describe the Betti and de Rham versions, and point out that they give isomorphisms between different moduli spaces of local systems, following Völklein, Dettweiler-Reiter, Haraoka-Yokoyama. Kostov's program for applying the Katz algorithm is to say that in the range where middle convolution no longer reduces the rank, one should give a direct construction of local systems. This has been done by Kostov and Crawley-Boevey. We describe here an alternative construction using the notion of cyclotomic harmonic bundles: these are like variations of Hodge structure except that the Hodge decomposition can go around in a circle.
Fichier principal
Vignette du fichier
kmca.pdf (571.52 Ko) Télécharger le fichier

Dates et versions

hal-00107120 , version 1 (17-10-2006)
hal-00107120 , version 2 (25-10-2006)

Identifiants

Citer

Carlos Simpson. Katz's middle convolution algorithm. 2006. ⟨hal-00107120v1⟩
215 Consultations
522 Téléchargements

Altmetric

Partager

More