Global well-posedness for the KP-I equation on the background of a non localized solution - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Physics Année : 2007

Global well-posedness for the KP-I equation on the background of a non localized solution

Résumé

We prove that the Cauchy problem for the KP-I equation is globally well-posed for initial data which are localized perturbations (of arbitrary size) of a non-localized (i.e. not decaying in all directions) traveling wave solution (e.g. the KdV line solitary wave or the Zaitsev solitary waves which are localized in $x$ and $y$ periodic or conversely).
Fichier principal
Vignette du fichier
paper.pdf (372.14 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00104398 , version 1 (06-10-2006)

Identifiants

Citer

Luc Molinet, Jean-Claude Saut, Nikolay Tzvetkov. Global well-posedness for the KP-I equation on the background of a non localized solution. Communications in Mathematical Physics, 2007, 272 (3), pp.775-810. ⟨hal-00104398⟩
162 Consultations
134 Téléchargements

Altmetric

Partager

More