Differential topology and geometry of smooth embedded surfaces: selected topics
Résumé
The understanding of surfaces embedded in E3 requires local and global concepts, which are respectively evocative of differential geometry and differential topology. While the local theory has been classical for decades, global objects such as the foliations defined by the lines of curvature, or the medial axis still pose challenging mathematical problems. This duality is also tangible from a practical perspective, since algorithms manipulating sampled smooth surfaces (meshes or point clouds) are more developed in the local than the global category. As a prerequisite for those interested in the development of algorithms for the manipulation of surfaces, we propose a concise overview of core concepts from differential topology applied to smooth embedded surfaces. We first recall the classification of umbilics, of curvature lines, and describe the corresponding stable foliations. Next, fundamentals of contact and singularity theory are recalled, together with the classification of points induced by the contact of the surface with a sphere. This classification is further used to define ridges and their properties, and to recall the stratification properties of the medial axis. Finally, properties of the medial axis are used to present sufficient conditions ensuring that two embedded surfaces are ambient isotopic. From a theoretical perspective, we expect this survey to ease the access to intricate notions scattered over several sources. From a practical standpoint, we hope it will be useful for those interested in certified approximations of smooth surfaces.
Loading...