Adaptive density estimation for general ARCH models - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2006

Adaptive density estimation for general ARCH models

Résumé

We consider a model $Y_t=\sigma_t\eta_t$ in which $(\sigma_t)$ is not independent of the noise process $(\eta_t)$, but $\sigma_t$ is independent of $\eta_t$ for each $t$. We assume that $(\sigma_t)$ is stationary and we propose an adaptive estimator of the density of $\ln(\sigma^2_t)$ based on the observations $Y_t$. Under various dependence structures, the rates of this nonparametric estimator coincide with the minimax rates obtained in the i.i.d. case when $(\sigma_t)$ and $(\eta_t)$ are independent, in all cases where these minimax rates are known. The results apply to various linear and non linear ARCH processes.
Fichier principal
Vignette du fichier
deconvARCH1.pdf (342.91 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00101417 , version 1 (27-09-2006)

Identifiants

Citer

Fabienne Comte, Jérôme Dedecker, Marie-Luce Taupin. Adaptive density estimation for general ARCH models. 2006. ⟨hal-00101417⟩
225 Consultations
123 Téléchargements

Altmetric

Partager

More