Fast simulated annealing in $\R^d$ and an application to maximum likelihood estimation - Archive ouverte HAL
Article Dans Une Revue Stochastic Processes and their Applications Année : 2009

Fast simulated annealing in $\R^d$ and an application to maximum likelihood estimation

Sylvain Rubenthaler
Tobias Rydén
  • Fonction : Auteur
  • PersonId : 835022
Magnus Wiktorsson
  • Fonction : Auteur
  • PersonId : 835023

Résumé

Using classical simulated annealing to maximise a function $\psi$ defined on a subset of $\R^d$, the probability $\p(\psi(\theta_n)\leq \psi_{\max}-\epsilon)$ tends to zero at a logarithmic rate as $n$ increases; here $\theta_n$ is the state in the $n$-th stage of the simulated annealing algorithm and $\psi_{\max}$ is the maximal value of $\psi$. We propose a modified scheme for which this probability is of order $n^{-1/3}\log n$, and hence vanishes at an algebraic rate. To obtain this faster rate, the exponentially decaying acceptance probability of classical simulated annealing is replaced by a more heavy-tailed function, and the system is cooled faster. We also show how the algorithm may be applied to functions that cannot be computed exactly but only approximated, and give an example of maximising the log-likelihood function for a state-space model.
Fichier principal
Vignette du fichier
annealing-report.pdf (347.1 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00093403 , version 1 (13-09-2006)

Identifiants

Citer

Sylvain Rubenthaler, Tobias Rydén, Magnus Wiktorsson. Fast simulated annealing in $\R^d$ and an application to maximum likelihood estimation. Stochastic Processes and their Applications, 2009, 119 (6), pp.1912-1931. ⟨10.1016/j.spa.2008.09.007⟩. ⟨hal-00093403⟩
295 Consultations
186 Téléchargements

Altmetric

Partager

More