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Abstract

Using classical simulated annealing to maximise a function ψ defined
on a subset of R

d, the probability P(ψ(θn) ≤ ψmax − ε) tends to zero
at a logarithmic rate as n increases; here θn is the state in the n-th
stage of the simulated annealing algorithm and ψmax is the maximal value
of ψ. We propose a modified scheme for which this probability is of
order n−1/3 log n, and hence vanishes at an algebraic rate. To obtain this
faster rate, the exponentially decaying acceptance probability of classical
simulated annealing is replaced by a more heavy-tailed function, and the
system is cooled faster. We also show how the algorithm may be applied
to functions that cannot be computed exactly but only approximated, and
give an example of maximising the log-likelihood function for a state-space
model.

Keywords : Central limit and other weak theorems, Computational methods
in Markov chains, Sequential estimation, Markov processes with continuous pa-
rameter, Monte Carlo methods, Stochastic programming.

MSC : 60F05, 60J22, 60J25, 62L12, 65C05, 82C80, 90C15.

1 Introduction

Simulated annealing is a simulation-based approach to the problem of optimising
a function. In the present paper we will be concerned with a real-valued function,
ψ say, defined on a subset Θ of R

d, and our aim is to maximise ψ. Thus
we assume that ψ is bounded and that its supremum is attained at least at
one point. Simulated annealing is designed to find the global maximum of ψ,
even if ψ has local maxima. It has been extensively studied, see for instance
Del Moral and Miclo (1999), Catoni (1999) and Cot and Catoni (1998) among
many others, and Bartoli and Del Moral (2001) for an elementary introduction to
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the subject. The classical simulated annealing algorithm departs from a Markov
transition kernel, which we denote by K(·, ·), on Θ, and a positive sequence
(βn)n≥0 increasing to infinity. The sequence (βn) is often referred to as an
(inverse) cooling schedule, because 1/βn is often interpreted as a temperature;
this terminology originates from statistical physics. Then, starting from an
initial point θ0 ∈ Θ, a sequence (θn)n≥0 is constructed recursively as follows.

(a1) In stage n, given the current state θn, sample a new proposed position Z
from K(θn, ·).

(a2) Set θn+1 = Z with probability

exp(−βn(ψ(θn) − ψ(Z))+)

and θn+1 = θn otherwise.

Here (·)+ is the positive part. We notice that if ψ(Z) ≥ ψ(θn), then the proposed
new state Z is accepted with probability one. A proposal Z at which ψ is smaller
than at the current θn may be accepted, but this becomes increasingly unlikely
for large n since βn → ∞.

The basic idea of simulated annealing is as follows. The update rule above
corresponds to a Markov transition kernel, Kβ say, on Θ; cf. (2.6) below. Under
additional assumptions including that K is positive recurrent and reversible
with respect to its stationary distribution, γ say,

γ(dx)K(x, dy) = γ(dy)K(y, dx),

one can prove that for fixed β, the stationary distribution of Kβ is absolutely
continuous with respect to γ with Radon-Nikodym derivative proportional to
exp{βψ(x)} (cf. Catoni, 1999, Proposition 1.2, or Bartoli and Del Moral, 2001,
p. 64). This indicates that as β increases, this stationary distribution becomes
increasingly concentrated around the maxima of ψ. Now, in the beginning of
the simulation scheme βn is small (the temperature is high), and the particle
θn is allowed to explore the space Θ rather freely. When the temperature cools
down (βn gets large), the particle is more and more lured to the regions where
ψ is large and should in the limit end up at a maximum point of ψ.

Obviously, the kernel K and the sequence (βn) are important design pa-
rameters of the algorithm. A typical choice for (βn) is a logarithmic increase;
βn = β0 log(n + e) for some β0 > 0. We note that with this cooling schedule,
the acceptance probability in (a2) above becomes

(n+ e)−β0(ψ(θn)−ψ(Z))+ . (1.1)

Under additional regularity assumptions one can prove that for β0 small
enough and if ψ has a single global maximum, it holds that for all ε > 0,

P(ψ(θn) ≤ ψmax − ε) → 0 as n→ ∞, (1.2)

where ψmax = supx∈Θ ψ(x). How fast is this convergence? In many works on
simulated annealing the space Θ is assumed finite, and one may then let ε→ 0
and thus study P(ψ(θn) < ψmax). Typically this probability tends to zero at
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an algebraic rate, see for instance Gielis and Maes (1999, Eq. (22)) (take f as
the indicator function of non-optimal states) and references in this paper. For a
continuous Θ the situation is different. If Θ ⊂ R

d one can show (see Appendix A)
that the rate of convergence in (1.2) is only logarithmic. Alternatively, one can
prove that there are numbers C and C′ such that for any ε > 0,

P(ψ(θn) ≤ ψmax − ε) ≤ Cn−C′ε (1.3)

Thus, the algebraic rate becomes infinitely slow as ε→ 0. Locatelli (2001) pro-
posed a refinement of the annealing scheme that reaches non-vanishing algebraic
rates, but it requires knowledge of ψmax which is an assumption we do not want
to make.

In the present paper we propose a modified simulated annealing scheme such
that for any ε > 0 there is a number Cε such that

P (ψ(θn) ≤ ψmax − ε) ≤ Cεn
−1/3(1 + logn). (1.4)

We will then say that the rate of convergence is 1/3, up to a logarithmic term.

2 Description of the new simulated annealing

scheme

Just as in classical simulated annealing, the proposed scheme departs from a
Markov transition kernel K and a cooling schedule (βn). The difference lies in
that the exponential function of the classical algorithm’s update is replaced by
a different function, and that the cooling schedule is altered. More precisely, we
let g : R

+ → R
+ be a C∞-function such that g(0) = 1, g is non-decreasing and

g(t) → ∞ as t → ∞. We set f = 1/g and suppose that f is convex and such
that supt≥0 |tf ′(t)| <∞. Then the algorithm looks as follows.

(b1) In stage n, given the current state θn, sample a new proposed position Z
from K(θn, ·).

(b2) Set θn+1 = Z with probability

f(βn(ψ(θn) − ψ(Z))+)

and θn+1 = θn otherwise.

In classical simulated annealing g(t) = et. In Section 3 we advocate the par-
ticular choice g(t) = 1 + t/τ for some τ > 0, and thus f(t) ∼ τ/t as t → ∞.
Compared to f(t) ∼ exp(−t), this allows the algorithm to be ‘more bold’ in
exploring regions far away from the current state. On the other hand we will
let βn be of order nα with α = 1/3, so that this sequence increases much faster
than logarithmically. Together, these conditions imply (1.4). We also remark
that with g as above and βn = n1/3, the acceptance probability in (b2) becomes

1

1 + n1/3

τ (ψ(θn) − ψ(Z))+
, (2.5)
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which should be compared to (1.1); we see that (2.5) decays much slower as
ψ(θn) − ψ(Z) → ∞, and thus again that the new algorithm is less likely to
reject proposals with function values far below the current one.

Modifications of the acceptance function f(t) = exp(−t) of classical simu-
lated annealing to speed up convergence rates have been discussed extensively
in the statistical physics literature, and is there often referred to as ‘fast simu-
lated annealing’. The acceptance function f(t) = 1/(1 + t/τ) introduced above
is similar to functions used in such papers; for instance, it corresponds to λ = 1
in Eq. (28) of Gielis and Maes (1999), and to qA = 2 in Eq. (5) of Tsallis and
Stariolo (1996). None of these authors obtained rate of convergence results for
these schemes however. Tsallis and Stariolo (1996, Example 3) did obtain a
convergence rate for f(t) = 1/(1+ t)2 and showed that this rate is indeed faster
than for classical simulated annealing; the result however assumes that ψmax is
known and these authors worked exclusively on a finite set Θ.

We now return to the algorithm and define, for any β > 0 and x, y ∈ Θ,

aβ(x, y) = f(β(ψ(x) − ψ(y))+).

One step of the above algorithm is then described by a Markov transition kernel
Kβ defined as

Kβ(x, dy) = aβ(x, y)K(x, dy) +

(

1 −
∫

Θ

aβ(x, z)K(x, dz)

)

δx(dy). (2.6)

Thus, assuming that the initial point θ0 is random and drawn from some prob-
ability distribution η0 on Θ, the sequence (θn)n≥0 is an inhomogeneous Markov
chain with initial law η0 and transition kernels (Kβn)n≥0; more precisely, for
any n, θn+1 has conditional distribution Kβn(θn, ·).

We will suppose that Θ is equipped with its Borel σ-field B(Θ), and we
will also assume that the Markov transition kernel K satisfies the following
condition.

Hypothesis 1. There exists εK > 0 and a probability measure λ on (Θ,B(Θ))
such that

∀(x,A) ∈ Θ × B(Θ) : εKλ(A) ≤ K(x,A) ≤ 1

εK
λ(A).

Of course, Hypothesis 1 is easier to fulfil if Θ is compact or bounded.

Regarding the function ψ, we also make some assumptions. Put, for any
ε > 0 and a < b,

Uε,a,b = {x ∈ Θ : ψmax − b− ε < ψ(x) ≤ ψmax − a− ε}.

Hypothesis 2. The oscillations of ψ are bounded, that is,

osc(ψ) := sup
x,y∈Θ

|ψ(x) − ψ(y)| <∞.

Hypothesis 3. Either one of the following two assumptions holds true.
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(i) For all ε > 0 small enough there are numbers C0(ε) > 0 and ε′ > 0 such
that for all δ > 0,

λ(Uε,δi,δ(i+1)) ≤ C0δ or iδ ≥ ε′.

(ii) The function ψ has a single global maximum, θmax say, located in the
interior of Θ (which is thus non-empty). The probability measure λ is
absolutely continuous with respect to Lebesgue measure and its density is
locally bounded. The function ψ is C3 in {x : ψ(x) > ψmax − ε′′}, which
is a neighbourhood of θmax (for some ε′′ > 0), and the quadratic form
ψ′′(θmax) is negative definite.

The attentive reader will notice that one could replace the assumption of a
unique maximum by an assumption that there are a finite number of maxima,
and that one could replace (ii) above by some more sophisticated assumptions
on the derivatives of ψ. This requires a higher level of technicality but the whole
proof would contain the same ideas and this is why we write the assumptions
in this way.

3 Rate of convergence

Throughout the remainder of the paper we take βn = nα∨1 for some 0 < α < 1.
The choice of this particular sequence will be explained in Remark 3.8. We
denote by (θn)n≥0 the sequence produced by the annealing scheme for this
cooling schedule. The main result of the present section is the following.

Theorem 3.1. Let M = osc(ψ) ∨ osc(ψ)α and suppose that g(tα)/t → 0 as
t→ ∞. Then for all ε > 0 small enough (if Hypothesis 3(i) holds) or 0 < ε ≤ ε′′

(if Hypothesis 3(ii) holds), there exists a Cε > 0 depending on ε such that for
all n,

P(ψ(θn) ≤ ψmax − ε)

≤ Cε

(

g(M(n+ 1)α)2

n
+

1

nα

(

1 +

∫ 1+nα osc(ψ)

0

f(t) dt

))

+ f(ε′nα)

under Hypothesis 3(i), or

P(ψ(θn) ≤ ψmax − ε)

≤ Cε

(

g(M(n+ 1)α)2

n
+

1

nα

∫ nα osc(ψ)2

0

f(t) dt

)

+ f((ε′′ − ε)nα)

under Hypothesis 3(ii).

Corollary 3.2. Choosing α = 1/3 and g(t) = 1+ t/τ , where τ > 0 is arbitrary,
the bounds of Theorem 3.1 are CεCn

−1/3(1 + logn).

Remark 3.3. If we want to have terms of the same order in the bounds of
Theorem 3.1, we see that g(Mnα)2/n and f(ε′nα) (or f((ε′′− ε)nα), depending
on the case) should be of the same order. Thus f(t) should be of order t−1/3 as
t → ∞. With this choice all terms in the bound have the same order, and so
there is something optimal to it. With our inequalities, it does not seem possible
to have a better rate.
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Remark 3.4. In Corollary 3.2 there is a parameter τ > 0 which can be chosen
arbitrarily. This parameter plays the role of a temperature like in classical sim-
ulated annealing and can be tuned by the user to optimise convergence. On the
contrary to classical simulated annealing there is, theoretically, no restriction on
τ .

Before going into the proof of these results, we will proceed through some
technical lemmas. First we however give some additional notation. The total
variation distance ‖µ−ν‖TV between two probability measures µ and ν is defined
as supA |µ(A) − ν(A)|, where the supremum is taken over the σ-field on which
the measures are defined. The set of probability measures on (Θ,B(Θ)) will be
denoted by P(Θ).

Lemma 3.5. For any β > 0 it holds that

∀(x,A) ∈ Θ × B(Θ) : Kβ(x,A) ≥ εKf(β osc(ψ))λ(A).

Corollary 3.6. The preceding lemma and Dobrushin’s theorem (see Dobrushin,
1956, or Del Moral and Guionnet, 2001) imply that for any β > 0 and any
probability measures µ and ν on Θ,

‖µKβ − νKβ‖TV ≤ (1 − εKf(β osc(ψ)))‖µ− ν‖TV.

Proof of Lemma 3.5. Take β > 0 and (x,A) ∈ Θ × B(Θ). Then

Kβ(x,A) ≥
∫

A

aβ(x, y)K(x, dy)

≥
∫

A

f(β osc(ψ))εK λ(dy)

= εKf(β osc(ψ))λ(A).

The above corollary implies that for any µ, the sequence (µKn
β )n≥0 is a

Cauchy sequence in total variation norm. Thus there exists a total variation
limit (cf. Lindvall, 2002, p. 232), which we denote by µβ . This probability
measure is invariant for Kβ, and it does not depend on the particular choice of
the initial distribution µ. It is hence the unique invariant distribution of Kβ.

The convergence of simulated annealing hinges on the fact that the law of
θn, which we denote by ηn, is close to µβn , and that for large βn the measure
µβn is concentrated on the regions where ψ is large. This concentration is the
subject of the next lemma. We set

Uε = {x ∈ Θ : ψ(x) > ψmax − ε},

and Uε,c is its complement in Θ.

Lemma 3.7. For all β > 0 and ε > 0 small enough (if Hypothesis 3(i) holds)
or 0 < ε ≤ ε′′ (if Hypothesis 3(ii) holds), there is a constant Cε depending on ε
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such that

µβ(U
ε,c) ≤ Cε

β

(

1 +

∫ 1+β osc(ψ)

0

f(t) dt

)

+ f(βε′) under Hypothesis 3(i),

µβ(U
ε,c) ≤ Cε

β

∫ β osc(ψ)2

0

f(t) dt+ f(β(ε′′ − ε)) under Hypothesis 3(ii).

Proof. Fix β > 0 and ε in the appropriate range. We have

µβ(U
ε,c) = µβKβ(U

ε,c)

=

∫∫

x∈Uε,c,y∈Uε,c

µβ(dx)Kβ(x, dy)

+

∫∫

x∈Uε,y∈Uε,c

µβ(dx)Kβ(x, dy).

For x ∈ Uε,c and y ∈ Uε, Kβ(x, dy) = K(x, dy). Thus the first integral above
can be bounded as
∫∫

x∈Uε,c,y∈Uε,c

µβ(dx)Kβ(x, dy) =

∫

x∈Uε,c

µβ(dx)

(

1 −
∫

y∈Uε

K(x, dy)

)

≤
∫

x∈Uε,c

µβ(dx)

(

1 −
∫

y∈Uε

εK λ(dy)

)

= (1 − εKλ(U
ε))µβ(U

ε,c).

Similarly, for the second integral,
∫∫

x∈Uε,y∈Uε,c

µβ(dx)Kβ(x, dy)

=

∫∫

x∈Uε,y∈Uε,c

µβ(dx)aβ(x, y)K(x, dy)

≤
∫∫

x∈Uε,y∈Uε,c

µβ(dx)aβ(x, y)
1

εK
λ(dy)

≤ 1

εK

∫

y∈Uε,c

f(β(ψmax − ε− ψ(y)))λ(dy),

so that

µβ(U
ε,c) ≤ 1

ε2Kλ(U
ε)

∫

y∈Uε,c

f(β(ψmax − ε− ψ(y)))λ(dy).

To finish the proof we will now bound the above integral as in the statement
of the lemma. If Hypothesis 3(i) holds, take δ = 1/β and proceed as

∫

y∈Uε,c

f(β(ψmax − ε− ψ(y)))λ(dy) ≤
osc(ψ)/δ
∑

i=0

f(i)λ(Uε,δi,δ(i+1))

≤
osc(ψ)/δ
∑

i=0

C0(ε)δf(i) +
∑

i≥ε′/δ
f(i)λ(Uε,δi,δ(i+1))

≤ C0(ε)δ

(

f(0) +

∫ 1+osc(ψ)/δ

0

f(t) dt

)

+ f

(

ε′

δ

)

.
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If Hypothesis 3(ii) holds we employ Morse’s lemma (see e.g. Berger and
Gostiaux, 1988, Theorem 4.2.12) to make a change of variables in {x : ψ(x) >
ψmax − ε′′} such that with some bounded function ξ (that only depends on ψ),

∫

y∈Uε,c

f(β(ψmax − ε− ψ(y)))λ(dy)

≤
∫

ψ(y)>ψmax−ε′′,y∈Uε,c

f(β(ψmax − ε− ψ(y)))λ(dy)

+

∫

ψ(y)≤ψmax−ε′′
f(β(ε′′ − ε))λ(dy)

≤
∫ osc(ψ)

√
ε

f(β(t2 − ε))ξ(t) dt + f(β(ε′′ − ε))

≤ ‖ξ‖∞
2
√
εβ

∫ β osc(ψ)2

0

f(u) du+ f(β(ε′′ − ε)),

after a change of variable u = β(t2 − ε).

Remark 3.8. In the following we will show that ηn is close to µβn . Using
Lemma 3.7 to bound µβn(Uε,c), we obtain a bound larger than 1/βn. We would
like to compare ηn(U

ε,c) to a power of n, so it is natural at this point to take,
for some α > 0,

βn = nα ∨ 1.

For technical reasons appearing in the proof of Theorem 3.1, we need to take
α < 1.

The law ηn approaches µβn which becomes increasingly concentrated on
regions where ψ is large, but at the same time βn is changing. The following
lemma serves us to bound the distance between µβ and µβ′ .

Lemma 3.9. With C = (1/εK) supt≥0 |tf ′(t)| it holds that for any β′ > β > 0,

‖µβ − µβ′‖TV ≤ Cg(β osc(ψ))

(

β′

β
− 1

)

.

Proof. We have, using Corollary 3.6,

‖µβ − µβ′‖TV ≤ ‖µβKβ − µβ′Kβ‖TV + ‖µβ′Kβ − µβ′Kβ′‖TV

≤ (1 − εKf(β osc(ψ)))‖µβ − µβ′‖TV + sup
µ∈P(Θ)

‖µKβ − µKβ′‖TV.

Pick µ ∈ P(Θ). We may construct two coupled samples from µKβ and µKβ′

respectively by first sampling x from µ, then sampling y from K(x, ·), sampling
U from the uniform distribution on (0, 1) and finally accepting the proposal y
if U ≤ αβ(x, y) or U ≤ αβ′(x, y) respectively. Similarly to Appendix B we may
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then conclude that

‖µKβ − µKβ′‖TV ≤ sup
x,y∈Θ

|aβ(x, y) − aβ′(x, y)|

≤ sup
0≤u≤osc(ψ)

|f(βu) − f(β′u)|

≤ sup
0≤u≤osc(ψ)

(|f ′(ξu)|βu)
(

β′

β
− 1

)

,

where ξ = ξ(u) is a point between β and β′. Since f is assumed convex and
non-increasing, and hence |f ′| non-increasing, it holds that |f ′(ξu)| ≤ |f ′(βu)|.
We thus arrive at the bound

‖µβ − µβ′‖TV ≤ 1

εKf(β osc(ψ))
sup

0≤u≤osc(ψ)

(|f ′(βu)|βu)
(

β′

β
− 1

)

.

Since |tf ′(t)| is assumed bounded, the proof is complete.

Proof of Theorem 3.1. Set ∆n = ‖ηn−µβn‖TV. If we can prove the inequality

∆n ≤ C
g(M(n+ 1)α)2

n
, (3.7)

the result will follow from Lemma 3.7 and, in case of Hypothesis 3(i), the bound
g ≥ 1.

In order to prove (3.7) the assumption g(xα)/x → 0 as x → ∞ will be
instrumental. We start by deriving a recursive bound for ∆n. By Corollary 3.6
and Lemma 3.9 we have, for all n,

∆n+1 ≤ ‖ηnKβn − µβnKβn‖TV + ‖µβn − µβn+1
‖TV

≤ (1 − εKf(βn osc(ψ)))‖ηn − µβn‖TV + C

(

βn+1

βn
− 1

)

g(nα osc(ψ))

≤ (1 − εKf(βn osc(ψ)))∆n + C
g(nα osc(ψ))

n+ 1
.

Iterating this recursion yields

∆n+1 ≤
n
∑

q=1

n
∏

k=q+1

(1 − εKf(βk osc(ψ))) × C
g(qα osc(ψ))

q + 1

+

n
∏

k=1

(1 − εKf(βk osc(ψ))) × ‖η1 − µβ1
‖TV,

where an empty product (when q = n) is interpreted as unity.

Define F such that F ′(x) = f(xα). Then for 1 ≤ q ≤ n− 1,

log

n
∏

k=q+1

(1 − εKf(βk osc(ψ))) ≤ −
n
∑

k=q+1

εKf(osc(ψ)kα)

≤ −εK
∫ n+1

q+1

f(osc(ψ)xα) dx

= − εK
osc(ψ)

(F (osc(ψ)(n+ 1)) − F (osc(ψ)(q + 1))).
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For q = n this is an equality. Putting C1 = εK/ osc(ψ) and C2 = osc(ψ) we
thus obtain

∆n+1 ≤ e−C1F (C2(n+1))
n
∑

q=1

eC1F (C2(q+1))C
g(C2q

α)

q + 1

+ 2e−C1(F (C2(n+1))−F (C2))

≤ Ce−C1F (C2(n+1))

∫ n+1

1

eC1F (C2(x+1)) g(C2x
α)

x
dx

+ 2e−C1(F (C2(n+1))−F (C2)).

Denote the integral on the right-hand side by In+1. First we notice that
since g ≥ 1, In+1 → ∞ as n→ ∞. Next we rewrite this integral as

In+1 =

∫ n+1

1

eC1F (C2(x+1))C1C2f(Cα2 (x+ 1)α) × g(Cα2 (x + 1)α)

C1C2

g(C2x
α)

x
dx,

where C1C2f(Cα2 (x+1)α) is the derivate of the exponent. By partial integration,
integrating the first factor of the integrand above and dropping all negative
contributions (recall that g and g′ are non-negative), we obtain the bound

In+1 ≤
[

eC1F (C2(x+1)) g(C
α
2 (x+ 1)α)

C1C2

g(C2x
α)

x

]n+1

1

+

∫ n+1

1

eC1F (C2(x+1)) g(C
α
2 (x+ 1)α)

C1C2

g(C2x
α)

x2
dx. (3.8)

Denote the integral on the right-hand side of (3.8) by I ′n+1. This integral is
similar to In+1, the difference being that the integrand is multiplied by a con-
stant times g(Cα2 (x+1)α)/x. Since this ratio tends to zero as x→ ∞, and since
In+1 → ∞ (as noted above), it holds that for any 0 < κ < 1, I ′n+1 ≤ κIn+1 for
sufficiently large n. Hence

In+1 ≤ 1

1 − κ

[

eC1F (C2(x+1)) g(C
α
2 (x+ 1)α)

C1C2

g(C2x
α)

x

]n+1

1

≤ CeC1F (C2(n+2)) g(M(n+ 2)α)2

n+ 1

for sufficiently large n; recall that M = C2∨Cα2 . Summing up thus far, we have
shown that

∆n+1 ≤ C

(

eC1(F (C2(n+2))−F (C2(n+1))) g(M(n+ 2)α)2

n+ 1
+ e−C1F (C2(n+1))

)

≤ C

(

g(M(n+ 2)α)2

n+ 1
+ e−C1F (C2(n+1))

)

, (3.9)

where the second inequality follows as F ′ is bounded.

Now take an arbitrary m > 0. Since g(xα)/x → 0 there is an xm > 0 such
that g(xα)/x ≤ 1/m for x ≥ xm, or, equivalently, f(xα) ≥ m/x for x ≥ xm.
Integrating this inequality yields F (x) − F (xm) ≥ m log(x/xm), so that

e−C1F (x)+C1F (xm) ≤
(

x

xm

)−mC1

10



for x ≥ xm. Picking m such that mC1 = 1 we see that as n → ∞, the second
term on the right-hand side of (3.9) is of smaller order than the first one. We
conclude that

∆n+1 ≤ C
g(M(n+ 2)α)2

n+ 1
,

which is (3.7).

4 Simulated annealing on a function that cannot

be computed exactly

In this section we assume that the function ψ to be maximised cannot be com-
puted explicitly, but that we have available an approximation to it. This approx-
imation, denoted by ψN , can be stochastic, based on Monte Carlo procedures;
the next section shows such an example. The precision of the approximation,
stochastic or not, is indexed by an integer-valued parameter N , and the larger
the N , the better the approximation. This parameter can be, for instance, the
number of replications in a Monte Carlo method. The following hypothesis
makes precise the quality of the approximation.

Hypothesis 4. For all N ≥ 1 we can compute a deterministic or stochastic
approximation ψN of ψ such that

E|ψN (x) − ψ(x)| ≤ a1√
N

for all x ∈ Θ,

and, almost surely,

|ψN (x) − ψN (y)| ≤ 2 osc(ψ) for all x, y ∈ Θ.

We suppose that this hypothesis holds true in all of the following. The
attentive reader will notice that the second of the above assumptions can be
replaced by the existence of a constant C such that, almost surely, |ψN (x) −
ψN (y)| ≤ C for all x, y ∈ Θ. In the case of approximation by a sample mean of
i.i.d. summands, the first part of the hypothesis follows from the Marcinkiewicz-
Zygmund inequality; see Appendix B for more details.

The sequence (βn), the cooling schedule, is again chosen as

βn = nα ∨ 1, (4.10)

although below we argue for the choice α = 1/4 rather than α = 1/3 as in the
previous section. We will let the parameter N depend on the iteration number
n as well, N = Nn, and we will assume that the increase is affine in n, meaning
that Nn = ⌈N0 +N1n⌉ for some numbers N0 ≥ 0 and N1 > 0 where ⌈x⌉ denotes
rounding x upwards to the nearest integer. We comment on other choices of
(Nn)n≥0 following the proof of Theorem 4.1 below.

We now formalise the simulated annealing procedure in this modified con-
text. The procedure is again described as a random sequence, denoted by
(θ̄n)n≥0, with θ̄0 sampled from the law η0 (as is θ0). The function g is cho-
sen as in Corollary 3.2, and (θ̄n) evolves as follows.

11



(c1) In stage n, given the current state θ̄n, sample a new proposed position Z
from K(θ̄n, ·).

(c2) Set θ̄n+1 = Z with probability

f(βn(ψ
Nn(θ̄n) − ψNn(Z))+)

and θ̄n+1 = θ̄n otherwise.

This procedure requires some comments. In step (c2), ψ is approximated at
two points, θn and Z. In the case of random approximations it is unimportant
whether these two evaluations are independent or not, as we shall see below,
but it is important that they are independent of approximations computed in
previous steps (smaller n) of the algorithm. The reason for this is that, if
such independence holds, the sequence (θ̄n) forms a Markov chain, and this
Markov chain is the object of our study. Moreover, the additional randomness
in step (c2) associated with the phrases ‘sample a new proposed position. . . ’ and
‘with probability. . . ’, typically obtained by drawing random numbers uniformly
in (0, 1), must be based on two mutually independent sequences of independent
random numbers, also independent of the function approximations ψN ; this is
just as in the previous annealing schemes however.

In cases where the random function approximations ψN are such that they
depend on random variables that are drawn once and for all and then stay fixed
over n (sometimes called ‘fixed randomness’), so that ψN is fixed at each point in
Θ, we can, as long as N stays fixed too, apply the results of the previous section
to the function ψN provided that it satisfies the regularity assumptions made
there. Main questions are then rather whether these assumptions indeed are
satisfied for ψN , and how well the maximum of ψN and its location approximate
those of ψ.

We now return to the sequence (θ̄n). As noted above, this sequence is an
(inhomogeneous) Markov chain. For any β > 0 and N ≥ 1, we define the
function

aNβ (x, y) = f(β(ψN (x) − ψN (y))+).

For fixed x and y this is indeed a random variable, the randomness coming from
the evaluations ψN (x) and ψN (y). We write EN for the expectation with respect
to the random variables used to compute ψN at a point for some approximation
index N , and PN for the corresponding probability. The kernels KNn

βn
of (θ̄)n≥0,

defined by
KNn

βn
(x,A) = P(θ̄n+1 ∈ A | θ̄n = x)

for any x ∈ Θ and A ∈ B(Θ), can then be expressed as

KN
β (x, dy) = EN

[

aNβ (x, y)K(x, dy) +

(

1 −
∫

Θ

aNβ (x, z)K(x, dz)

)

δx(dy)

]

.

(4.11)

The final assumption we make before stating the main result of this section
is the following.

Hypothesis 5. There is a constant CK such that for all β > 0 and N ′ > N ≥ 1,

sup
µ∈P(Θ)

‖µKN
β − µKN ′

β ‖TV ≤ CKβ
N ′ −N

N
. (4.12)
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In Appendix B we discuss this condition in detail for approximations ob-
tained as sample means of i.i.d. random variables, and for approximations ob-
tained using so-called particle filters. It turns out that Hypothesis 5 can often
be verified through a coupling argument; that is, we couple the approximations
ψN and ψN

′

in a suitable way. We notice that by such an argument it also
follows that provided Hypothesis 4 holds, one can bound the left-hand side of
(4.12) by a constant times β/

√
N ; the actual assumption above is thus stronger.

Theorem 4.1. Assume that βn is as in (4.10) with α < 1/2 and that Nn
increases linearly with n. Then under Hypotheses 1, 2, 3, 4 and 5, for all ε > 0
small enough (if Hypothesis 3(i) holds) or 0 < ε ≤ ε′′ (if Hypothesis 3(ii) holds),
there exists a constant C′

ε depending on ε such that

P(ψ(θ̄n) ≤ ψmax − ε) ≤ C′
ε(n

−α logn ∨ n3α−1) (4.13)

for sufficiently large n.

Equating the two powers of this bounds leads to α = 1/4 as the optimal
choice, with corresponding rate of convergence n−1/4 logn.

The proof of Theorem 4.1 is very similar to the proof of Theorem 3.1; before
going into it, we will proceed through some technical lemmas. The following re-
sults can be shown exactly in the same manner as Lemma 3.5 and Corollary 3.6.

Lemma 4.2. For any β > 0 and N ≥ 1 it holds that

∀(x,A) ∈ Θ × B(Θ) : KN
β (x,A) ≥ εKλ(A)f(2β osc(ψ)).

Corollary 4.3. For all β > 0, N ≥ 1 and any probability measures µ and ν on
Θ,

‖µKN
β − νKN

β ‖TV ≤ (1 − εKf(2β osc(ψ)))‖µ− ν‖TV.

We point out, in particular, that these results hold true regardless of whether
the two function approximations required for computing aNβ (x, y) are indepen-
dent or not.

The results imply that for any β > 0 and N ≥ 1, the kernel KN
β has a

unique stationary distribution, which we denote by µNβ . We will show that

under certain conditions, µNβ is concentrated around the maximum of ψ.

Lemma 4.4. For all β > 0, ε > 0 small enough (if Hypothesis 3(i) holds)
or 0 < ε < ε′′ (if Hypothesis 3(ii) holds) and N ≥ 1 such that N ≥ β2 and
N ≥ (8a1/ε)

2, there is a constant C′′
ε depending on ε but not on N such that

µNβ (Uε,c) ≤ C′′
ε

1 + log β

β
.

Proof. We proceed as in Lemma 3.7 and thus write

µNβ (Uε,c) = µNβ K
N
β (Uε,c)

=

∫∫

x∈Uε,c,y∈Uε,c

µNβ (dx)KN
β (x, dy) +

∫∫

x∈Uε,y∈Uε,c

µNβ (dx)KN
β (x, dy)
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and
∫∫

x∈Uε,c,y∈Uε,c

µNβ (dx)KN
β (x, dy) =

∫

x∈Uε,c

µNβ (dx)

(

1 −
∫

y∈Uε

KN
β (x, dy)

)

.

For x ∈ Uε,c it holds that
∫

y∈Uε

KN
β (x, dy) = EN

(∫

y∈Uε

f(β(ψN (x) − ψN (y))+)K(x, dy)

)

≥
∫

y∈Uε

εKPN (ψN (y) ≥ ψN (x))λ(dy)

≥
∫

y∈Uε/2

εK [1 − PN (ψN (x) − ψ(x) − ψN (y) + ψ(y) ≥ ε/2)]λ(dy)

≥
∫

y∈Uε/2

εK

(

1 − 4a1

ε
√
N

)

λ(dy) ≥ εK
2
λ(Uε/2),

where a1 is in Hypothesis 4 and we used Markov’s inequality and the assumption
N ≥ (8a1/ε)

2. Hence
∫

x∈Uε,c,y∈Uε,c

µNβ (dx)KN
β (x, dy) ≤ µNβ (Uε,c)

(

1 − εK
2
λ(Uε/2)

)

and

µNβ (Uε,c) ≤ 2

εKλ(Uε/2)

∫∫

x∈Uε,y∈Uε,c

µNβ (dx)KN
β (x, dy).

The integral in this bound equals

EN

(∫∫

x∈Uε,y∈Uε,c

µNβ (dx)f(β(ψN (x) − ψN (y))+)K(x, dy)

)

≤ EN

(∫∫

x∈Uε,y∈Uε,c

µNβ (dx)
1

εK
f(β(ψN (x) − ψN (y))+)λ(dy)

)

=
1

εK

∫∫

x∈Uε,y∈Uε,c

µNβ (dx)f(β(ψ(x) − ψ(y))+)

×EN

(

f(β(ψ(x) − ψ(y))+ + βRN (x, y))

f(β(ψ(x) − ψ(y)))+

)

λ(dy),

where RN (x, y) = (ψN (x)−ψN (y))+ − (ψ(x)−ψ(y))+. Notice that the expres-
sion inside the final expectation is bounded by g(β(ψ(x) − ψ(y))+). Thus the
expectation itself, inserting g(t) = 1 + t/τ , may be bounded as

EN

(

1 + β
τ (ψ(x) − ψ(y))+

1 + β
τ (ψ(x) − ψ(y))+ + β

τR
N (x, y)

)

≤ 2 PN

(

∣

∣

∣

∣

β

τ
RN(x, y)

∣

∣

∣

∣

≤ 1 + β
τ (ψ(x) − ψ(y))+)

2

)

+

(

1 +
β

τ
(ψ(x) − ψ(y))+

)

PN

(

∣

∣

∣

∣

β

τ
RN (x, y)

∣

∣

∣

∣

≥ 1 + β
τ (ψ(x) − ψ(y))+)

2

)

≤ 2 +
2β

τ
EN |RN (x, y)|.
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Now notice that in the expression for RN (x, y), ψ(x)− ψ(y) ≥ 0 for those x
and y appearing in the integral. It is easy to check that for any real a and b such
that b ≥ 0, |a+−b| ≤ |a−b|. Hence |RN(x, y)| ≤ |ψN (x)−ψ(x)|+|ψN (y)−ψ(y)|,
and the above expectation is thus bounded by 2 + 4βa1/(τ

√
N) ≤ 2 + 4a1/τ ,

where we used the assumption N ≥ β2.

As in the proof of Lemma 3.7 we may conclude that

∫∫

x∈Uε,y∈Uε,c

µNβ (dx)KN
β (x, dy)

≤ 2(1 + 2a1/τ)

εK

∫

y∈Uε,c

f(β(ψmax − ε− ψ(y)))λ(dy).

Summing up thus far, we have proved that

µNβ (Uε,c) ≤ 4(1 + 2a1/τ)

ε2Kλ(U
ε/2)

∫

y∈Uε,c

f(β(ψmax − ε− ψ(y)))λ(dy).

This integral can be bounded just as in the proof of Lemma 3.7, and with
f(t) = 1/(1 + t/τ) these bounds are of order C′′

ε (1 + log β)/β.

We now formulate an analogue of Lemma 3.9.

Lemma 4.5. For any β′ > β > 0,

‖µNβ − µNβ′‖TV ≤ 1 + 2β osc(ψ)/τ

4εK

(

β′

β
− 1

)

.

Proof. We have, using Corollary 4.3,

‖µNβ − µNβ′‖TV ≤ ‖µNβ KN
β − µNβ′KN

β ‖TV + ‖µNβ′KN
β − µNβ′KN

β′‖TV

≤ (1 − εKf(2β osc(ψ)))‖µNβ − µNβ′‖TV + sup
µ∈P(Θ)

‖µKN
β − µKN

β′‖TV.

Using (4.11), Hypothesis 4 and an argument as in the proof of Lemma 3.9, we
find that for all µ ∈ P(Θ),

‖µKN
β − µKN

β′‖TV ≤ sup
x,y∈Θ

EN |aNβ (x, y) − aNβ′(x, y)|

≤ sup
0≤u≤2 osc(ψ)

|f(βu) − f(β′u)|

≤ sup
0≤u≤2 osc(ψ)

(|f ′(βu)|βu)
(

β′

β
− 1

)

.

With g(t) = 1 + t/τ , the above supremum is bounded by 1/4. Thus

‖µNβ − µNβ′‖TV ≤ 1

εKf(2β osc(ψ))

1

4

(

β′

β
− 1

)

=
1 + 2β osc(ψ)/T

4εK

(

β′

β
− 1

)

.
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Proof of Theorem 4.1. First we notice that given the assumptions, including
α < 1/2, Lemma 4.4 shows that µNn

βn
(Uε,c) is bounded by C′′

ε n
−α(1 + α logn)

for sufficiently large n. This term is the first part of the maximum in (4.13).

Next we denote by η̄n the law of θ̄n and put ∆n = ‖η̄n − µNn

βn
‖TV. Write

∆n+1 ≤ ‖η̄nKNn

βn
− µNn

βn
KNn

βn
‖TV + ‖µNn

βn
− µNn

βn+1
‖TV + ‖µNn

βn+1
− µ

Nn+1

βn+1
‖TV

≤ (1 − εKf(2βn osc(ψ)))∆n +
1 + 2βn osc(ψ)/τ

4εK

(

βn+1

βn
− 1

)

+‖µNn

βn+1
− µ

Nn+1

βn+1
‖TV, (4.14)

where we used Corollary 4.3 and Lemma 4.5 to bound the first two terms. With
our choice of βn, the second term on the right-hand side is of order nα−1.

To bound the third term we proceed as in the proof of Lemma 4.5; use
Corollary 4.3 to see that for any β, N and N ′,

‖µNβ − µN
′

β ‖TV ≤ ‖µNβ KN
β − µN

′

β KN
β ‖TV + ‖µN ′

β KN
β − µN

′

β KN ′

β ‖TV

≤ (1 − εKf(2βosc(ψ)))‖µNβ − µN
′

β ‖TV + sup
µ∈P(Θ)

‖µKN
β − µKN ′

β ‖TV

to arrive at

‖µNβ − µN
′

β ‖TV ≤ 1

εKf(2βosc(ψ)))
sup

µ∈P(Θ)

‖µKN
β − µKN ′

β ‖TV.

Apply this bound with β = βn+1, N = Nn and N ′ = Nn+1 to see that the
final term of (4.14) is bounded by a constant times β2

n+1(Nn+1−Nn)/Nn under
Hypothesis 5; this ratio is of order n2α−1 given that Nn is assumed to be affine
in n.

Summing up thus far, we have proved that

∆n+1 ≤ (1 − εKf(2βn osc(ψ)))∆n +
C

n1−2α

for some constant C. Using this inequality we can show as in the proof of The-
orem 3.1 that for all ε > 0, ∆n ≤ C′

εn
3α−1 for some constant C′

ε depending on
ε. Indeed, in the proof of Theorem 3.1, replace the factor x in the denominator
of the expression that forms the integrand in In+1 by x1−α and proceed from
there. The term C′

εn
3α−1 is the second part of the maximum in (4.13).

One may consider other ways of increasing Nn, for instance Nn = ⌈N0 +
N1n

δ⌉ for some δ > 0. For δ > 1 the expression (Nn+1 −Nn)/Nn is then still
of order n−1 however, so there is no improvement in the proof of Theorem 4.1
compared to the case of affine increase. For δ < 1 the above expression is of
order n−δ, since the Nn are integer-valued. The bound corresponding to (4.13)
then becomes of order n−α logn ∨ n3α−δ, with the optimal α being δ/4.

The above seems to suggest that the rate n−1/3 logn of Section 3 is unob-
tainable when the function ψ is approximated. This is not the case however,
but it requires a slightly different approach to analysis than above, and also
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typically a faster increase of Nn. In the proof of Theorem 4.1 we compared η̄n
to µNn

βn
. Consider instead comparing to µβn , as in the proof of Theorem 3.1,

and write

η̄n+1 − µβn+1
= η̄nK

Nn

βn
− µβnK

Nn

βn

+ µβnK
Nn

βn
− µβn+1

KNn

βn

+ µβn+1
KNn

βn
− µβn+1

KNn

βn+1

+ µβn+1
KNn

βn+1
− µβn+1

Kβn+1
.

On the right-hand side the total variation norm of the first difference is bounded
by (1 − εKf(2βn osc(ψ)))‖η̄n − µβn‖TV (Corollary 4.3), and the norms of the
remaining differences are bounded by terms of order nα−1 (Lemma 3.9), n−1

(use part of the proof of Lemma 4.5) and nα/N
1/2
n respectively. To obtain the

order nα/N
1/2
n of the final term we can couple the kernels Kβ and KN

β in a way
similar to that used in the first part of Appendix B, thus obtaining a bound on
the total variation distance of order β supx∈Θ EN |ψN (x)−ψ(x)|; by Hypothesis 4
this expression is of order β/N1/2. Thus we do not require Hypothesis 5 for this
analysis.

We can now put ∆n = ‖η̄n − µβn‖TV and mimic the proof of Theorem 4.1.
To obtain the rate of convergence n−α logn, the norms of all differences on
the right-hand side, except the first one, must be of order n−2α. This in turn
requires taking α ≤ 1/3 and Nn of the order n6α. In particular this applies when
α = 1/3, so that this rate is obtainable but at the cost of quickly increasing Nn
at rate n2. We also notice that when α = 1/4, to obtain the rate of convergence
n−1/4 logn it is required to take Nn of order n3/2, which is larger than the linear
rate used in Theorem 4.1.

However, a more fair way to look at convergence rates is to express them in
terms of the number of numerical operations performed. We assume that the
computational cost of computing an approximation ψN (x) is of order N ; this
is for instance the case for the Monte Carlo schemes discussed in Appendix B.
With Nn being affine in n, the total computational cost up to stage n of the
simulated annealing scheme is thus of order n2. Denoting the total number of
numerical operations performed by C, we then find that the convergence rate is
of order C−1/8 logC. If we rather use the second bound above, which requires
Nn of order n6α, we see that the computational cost up to stage n is of order
n6α+1 and the convergence rate is of order C−α/(6α+1) logC for 0 < α ≤ 1/3.
The optimal α is α = 1/3, with rate C−1/9 logC. This is inferior to C−1/8 logC,
so that the decomposition of the proof of Theorem 4.1 is superior; it does require
Hypothesis 5 however.

5 A numerical illustration

In this section we consider simulated annealing applied to the likelihood function
of a state-space model as in Appendix B.2. Thus assume that we have an
observed sequence (yt)1≤t≤T from a state-space model ((St, Yt))1≤t≤T , whose
Markov transition kernel Q and conditional output densities r(·|s) both depend
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on an unknown parameter (vector) θ which we wish to estimate using maximum
likelihood.

The log-likelihood function that we aim to maximise is

ℓT (θ) =
T
∑

t=1

log pθ(yt|y1:t−1) =
T
∑

t=1

log

∫

rθ(yt|s)πθt|t−1(ds),

where pθ(yt|y1:t−1) is the conditional density of Yt given Y1:t−1, and πθt|t−1 is

the predictive distribution Pθ(St ∈ · | y1:t−1). As πθt|t−1 can in general not be
computed we need to approximate the log-likelihood function, and one way to
do that is through

ℓNT (θ) =

T
∑

t=1

log

∫

rθ(yt|s)πθ,Nt|t−1(ds),

where we take πθ,Nt|t−1(ds) as the particle filter approximation of Appendix B.2.

The log-likelihood function is essentially a sum of functions of the form
studied in Appendix B.2, except for the logarithmic transformation. Assuming
however, as in Appendix B.2, that rθ is uniformly bounded from below by some
r > 0, we find that each of the integrals above are bounded from below by
r. Moreover, using the inequality |log x − log y| ≤ |x − y|/(x ∧ y), valid for all
x, y > 0, we find that

|ℓNT (θ) − ℓN
′

T (θ)| ≤ 1

r

T
∑

t=1

∣

∣

∣

∣

∫

rθ(yt|s)πθ,Nt|t−1(ds) −
∫

rθ(yt|s)πθ,N
′

t|t−1(ds)

∣

∣

∣

∣

.

This bound involves sums of functions of the form studied in Appendix B.2
(take h(s) = rθ(yt|s)), and we can proceed as there to show that Hypothesis 5
holds. A similar argument where we replace ℓT (θ) by the exact likelihood and
appeal to Theorem 7.4.4 of Del Moral (2004) shows that Hypothesis 4 holds.

5.1 Simulation study

We considered the benchmark model (Doucet et al., 2001, Eqs. 8.3.4–8.3.5)

St = aSt−1 + b
St−1

1 + S2
t−1

+ γ cos(1.2t) + σvVt, (5.15)

Yt =
S2
t

20
+ σwWt, (5.16)

where (St) is the unobserved Markov chain taking values in R, (Yt) is the ob-
servable process and (Vt) and (Wt) are mutually independent sequences of i.i.d.
standard Gaussian random variables. We wish to estimate the five model pa-
rameters θ = (a, b, γ, σv, σw) given a sequence (yt)1≤t≤T of observations, and
we did so using the approximate maximum likelihood (ML) approach outlined
above with the bootstrap particle filter, i.e. particle mutations following the sys-
tem dynamics (5.15). We remark that the state space of the model above is not
compact, so that the conditional densities rθ(y|s) are not bounded from below
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Figure 1: Normal probability plots of approximate ML estimates of parameters
(a, b, γ, σv, σw) in the model (5.15)–(5.16), obtained from 150 replications of
5,000 iterations of the simulated annealing scheme applied to the particle filter
approximation of the log-likelihood.

in s. The model does thus not fulfil the technical conditions made above, but
the results below are still an illustrative example of how the simulated annealing
scheme performs in a particular case.

We simulated a single trajectory (yt)1≤t≤T of length T = 500 with pa-
rameters θ0 = (a0, b0, γ0, σ0

v , σ
0
w) = (0.9, 18, 10,

√
10, 1). In the simulated an-

nealing scheme we let the inverse temperature be βn = 10n1/4, correspond-
ing to τ = 1/10 in Corollary 3.2, and let number of particles at step n be
Nn = n ∨ 20, a function which is affine for n ≥ 20 (Theorem 4.1). The
algorithm was run for 5,000 iterations in each of 150 independent replica-
tions. The parameter space Θ was taken as the five-dimensional hyper-rectangle
[0.45, 1.8]× [9, 36]× [5, 20]× [0.316, 36]× [0.5, 2]. For K we used a Gaussian ran-
dom walk proposal (on the log-scale for the standard deviations), where we
constrained the random walk to Θ; any coordinate of the parameter proposed
outside Θ was pulled back to the boundary. The incremental covariance of the
kernel at step n was a diagonal matrix whose i-th diagonal element was the
squared i-th side length of Θ divided by log(n + 1)2. In each replication the
initial point θ0 was drawn uniformly on Θ.

After 5,000 iterations of the simulated annealing algorithm, the sample
means and standard errors of the parameter estimates θ̄5000 (over the 150 repli-
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cations) were (0.85, 19.1, 10.1, 3.4, 1.01) and (0.024, 3.0, 0.46, 0.41, 0.11) respec-
tively. These sample means are in good agreement with the true θ0. Ideally
we would like to compare to the ML estimates, which are however unavailable.
Figure 1 shows that the estimates follow normal distributions with good accu-
racy, with the exception of σv. This of course is an empirical observation for
which we have no theoretical support, as we have not discussed convergence in
law of the differences θn − θmax and θ̄n − θmax, suitably scaled, where θmax is
the point where ψ is maximal.
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A Rate of convergence of classical simulated an-

nealing

In this section we prove the bound (1.3) and also, by studying a specific example,
that this bound cannot be improved generally. We assume that Hypotheses 1–2
and Hypothesis 3(ii) hold. Since we now consider classical simulated annealing
we have f(t) = exp(−t), and we take βn = β0 log(n+ e) with 1/β0 > osc(ψ) (cf.
Bartoli and Del Moral, 2001, Theorem 2.3.5). As in Section 3 we let ηn be the
law of θn and denote by µβ the invariant distribution of Kβ.

Now write

P(ψ(θn) ≤ ψmax − ε) = ηn(U
ε,c) = (ηn(Uε,c) − µβn(Uε,c)) + µβn(Uε,c).

We will show that the first term of this decomposition (the difference) tends
to zero at algebraic rate, while the second term vanishes only logarithmically
fast. Thus the left-hand side tends to zero at logarithmic rate too. In a specific
example we will also show that the logarithmic rate for the second term, which
in general is a bound, is in fact the exact rate; thus the logarithmic rate for
the left-hand side cannot be improved generally. Here emerges an essential
difference between classical simulated annealing and the new scheme analysed
in Section 3. In both cases the total variation distance between the law ηn of θn
and the invariant law µβn vanishes at algebraic rate; nα−1 for classical simulated
annealing (see below) and n2α−1 for the new scheme (Theorem 3.1). The rate
at which µβn concentrates around the maximum of ψ is much different however;
this rate is algebraic too for the new scheme (Lemma 3.7), but only logarithmic
(or algebraic with rate tending to zero) for the classical scheme.

We now proceed to the details. Put once again ∆n = ‖ηn − µβn‖TV. We
then have the recursion

∆n+1 ≤ (1 − εKe
−βn osc(ψ))∆n + (βn+1 − βn) osc(ψ);

see Bartoli and Del Moral (2001, Remark 3.3.13) and cf. the proof of Theo-
rem 3.1. With the present choice of (βn) we find βn+1 − βn ≤ β0/(n + 1) and
exp(−βn osc(ψ)) = (n + e)−α with α = β0 osc(ψ) < 1. Iterating the above
recursion yields

∆n+1 ≤
n
∑

q=1

n
∏

k=q+1

(

1 − εK
(k + e)α

)

× β0 osc(ψ)

q + 1

+

n
∏

k=1

(

1 − εK
(k + e)α

)

× ‖η1 − µβ1
‖TV,

where an empty product (when q = n) is interpreted as unity. Bound the
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product as

log

n
∏

k=q+1

(

1 − εK
(k + e)α

)

≤ −
n
∑

k=q+1

εK
(k + e)α

≤ −εK
∫ n+1

q+1

dx

(x+ e)α

= −C1((n+ e+ 1)1−α − (q + e+ 1)1−α),

where C1 = εK/(1 − α). Thus, using β0 osc(ψ) < 1 again as well,

∆n+1 ≤ e−C1(n+e+1)1−α
n
∑

q=1

eC1(q+e+1)1−α 1

q + 1

+ e−C1((n+e+1)1−α−(e+1)1−α)‖η1 − µβ1
‖TV

≤ e−C1(n+e+1)1−α

∫ n+1

1

eC1(x+e+1)1−α 1

x
dx+ Ce−C1(n+e+1)1−α

.

By manipulating the integral on the right-hand side, In+1 say, we can just as in
the proof of Theorem 3.1 prove that

In+1 ≤ CeC1(n+e+2)1−α 1

(n+ 1)1−α
.

Hence we obtain

∆n+1 ≤ Ce−C1((n+e+1)1−α−(n+e+2)1−α) 1

(n+ 1)1−α
+ Ce−C1(n+e+1)1−α

≤ C

(n+ 1)1−α

and thus ∆n ≤ C/n1−α.

So far the difference between ηn and µβn . We now turn to how concentrated
µβn is around the maximum of ψ. To start with we may employ Lemma 3.7,
with f and βn as above, to obtain

µβn(Uε,c) ≤ Cε
β0 log(n+ e)

+ (n+ e)−β0(ε
′′−ε);

a logarithmic rate in other words. We can also use the property mentioned in
(Bartoli and Del Moral, 2001, p. 64), that µβ equals exp(βψ(x)) γ(dx) up to a
normalising constant with γ the invariant distribution of K, to obtain

µβ(U
ε,c) =

∫

Uε,c

eβψ(y) γ(dy)
∫

eβψ(y) γ(dy)

≤

∫

Uε,c

eβ(ψmax−ε) γ(dy)
∫

Uε/2

eβ(ψmax−ε/2) γ(dy)
=

e−βε/2

γ(Uε/2)
. (A.17)
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Inserting βn for β, it follows that

µβn(Uε,c) ≤ 1

γ(Uε/2)
(n+ e)−(β0/2)ε.

This is the bound (1.3).

We now prove that this bound cannot be improved in general. Consider
the example Θ = [−1/2, 1/2], ψ(x) = −|x|, K(x, dy) = dy. Thus K is an
independence kernel that proposes uniformly on Θ. It is immediate that the
invariant measure γ of K is Lebesgue measure on Θ, and that γ is K-reversible.
Now µβ(A) is proportional to

∫

A
exp(−β|y|) dy, so that

µβ(U
ε,c) =

∫

ε<|y|≤1/2

e−β|y| dy

∫

Θ

e−β|y| dy
=
e−βε − e−β/2

1 − e−β/2
∼ e−βε as β → ∞.

We can indeed, by an obvious modification of the argument above, adjust (A.17)
into the bound 1/γ(Uεδ) × e−β(1−δ)ε, where 0 < δ < 1 is arbitrary. The rate
of this bound thus can thus be made arbitrarily close to the exact rate of this
example.

B Coupling function approximations

The purpose of this appendix is to illustrate how one may construct function
approximations ψN that satisfy Hypothesis 5, and how the relatively ‘high level’
condition of this hypothesis can be guaranteed by more ‘low level’ assumptions.

Thus assume that we are given a probability measure µ on Θ, β > 0, and
two approximation indices N and N ′. We wish to bound ‖µKN

β − µKN ′

β ‖TV =

supA |µKN
β (A) − µKN ′

β (A)|, where the supremum is over A ∈ B(Θ). We will

accomplish this by constructing two coupled samples from µKN
β and µKN ′

β

respectively as follows.

(i) Sample a point x from µ and then a point z from K(x, ·).

(ii) Compute the function approximations ψN (x), ψN (z), ψN
′

(x) and ψN
′

(z).
For the time being we do not specify exactly how this is done.

(iii) Sample a random number U from the uniform distribution on (0, 1) and
accept the proposal z if U ≤ f(β(ψN (x)−ψN (z))+) or U ≤ f(β(ψN

′

(x)−
ψN

′

(z))+) respectively, for the two indices N and N ′.

The samples µKN
β and µKN ′

β so constructed will be different only if the two
decisions is step (iii) are different, so the probability of the former event is
bounded by the probability of the latter one. To compute the probability that
the decisions of step (iii) differ, we notice this event occurs if U falls in between
the two function values used there, which, since U is uniform, happens with
(conditional) probability

|f(β(ψN (x) − ψN (z))+) − f(β(ψN
′

(x) − ψN
′

(z))+)|.
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Hence the probability of different decisions in step (iii) is bounded by

sup
x,z∈Θ

E|f(β(ψN (x) − ψN (z))+) − f(β(ψN
′

(x) − ψN
′

(z))+)|,

where the expectation is w.r.t. the function approximations ψN and ψN
′

. The
difference of the function values can be bounded as

β|(ψN (x) − ψN (z))+ − (ψN
′

(x) − ψN
′

(z))+| × f ′(ζ),

where ζ is point between the two function arguments. By the assumptions on
f its derivative is necessarily bounded, and it is straightforward to check that
for any real a and b, |a+ − b+| ≤ |a− b|. Therefore the probability of different
decisions in step (iii) is bounded by

β‖f ′‖∞ sup
x,z∈Θ

E|(ψN (x) − ψN (z)) − (ψN
′

(x) − ψN
′

(z))|

≤ 2β‖f ′‖∞ sup
x∈Θ

E|ψN (x) − ψN
′

(x)|.

Thus, at this point we see that if the function approximations satisfy

sup
x∈Θ

E|ψN (x) − ψN
′

(x)| ≤ C
N ′ −N

N
(B.18)

for some constant C, Hypothesis 5 will hold.

Verifying (B.18) is, of course, a problem very much related to the specific
construction of these approximations. In the following two subsections we will
deal with two specific settings: i.i.d. sample means and particle filters.

B.1 Simple Monte Carlo sample means

Here we consider the possibly simplest of all approximation schemes: a sample
mean of i.i.d. summands. Thus we assume that for a random variable ξ with
some known distribution and some known function h, ψ(x) = Eh(ξ;x) where
the expectation is w.r.t. ξ, and that its approximation is

ψN (x) =
1

N

N
∑

i=1

h(ξi;x)

where the ξi are i.i.d. variables distributed as ξ. We note in passing that for
this scheme the Marcinkiewicz-Zygmund inequality (Shiryaev, 1995, p. 498) with
p = 1 implies that Hypothesis 4 holds. Moreover, for N ′ > N ,

ψN (x) − ψN
′

(x) =

(

1

N
− 1

N ′

) N
∑

i=1

h(ξi;x) −
1

N ′

N ′
∑

i=N+1

h(ξi;x)

and

E|ψN (x) − ψN
′

(x)| ≤
(

1

N
− 1

N ′

)

NE|h(ξ;x)| + 1

N ′ (N
′ −N)E|h(ξ;x)|

= 2 E|h(ξ;x)| N
′ −N

N ′ .

It is now immediate that if E|h(ξ;x)| is bounded in x ∈ Θ, (B.18) holds.

24



B.2 Particle filter estimates

Consider a state-space model ((St, Yt))t≥1, where (St) is an unobserved Markov
chain on some general state space and (Yt) is an observed sequence of random
variables. The association between (St) and (Yt) is local in the sense that (i)
given (St), the Y -variables are conditionally independent, and (ii) given (St)
and for any time index u, the conditional distribution of Yu depends on Su only.

We will denote the transition kernel of the Markov chain (St) by Q, and the
conditional density of Yt given St = s by r(·|s). Both of these quantities are
assumed to depend on some model parameters θ, which we indicate by writing
Qθ and rθ respectively.

The function ψ we wish to approximate is ψ(θ) = Eθ[h(St) | y1:t−1], that
is, the expectation of some function h w.r.t. the so-called predictive distribution
πθt|t−1(·) = Pθ(St ∈ · | y1:t−1), where t ≥ 1 is some time index, the notation y1:t−1

is short for y1, y2, . . . , yt−1, and subindex ‘t|t−1’ indicates that the distribution
concerns the state at time t conditional on observed data up to time t− 1.

The predictive distributions can, together with the so-called filter distribu-
tions πθt|t(·) = Pθ(St ∈ · | y1:t), be computed recursively in time—at least in
principle. The recursive formulae read

πθt|t(ds) =
rθ(y|s)πθt|t−1(ds)

∫

rθ(y|s′)πθt|t−1(ds
′)

(B.19)

and

πθt+1|t(·) =

∫

Qθ(s, ·)πθt|t(·). (B.20)

The first of these formulae is just Bayes’ rule, and the second one means to
propagate the filter through the state dynamics Qθ.

In practice the above relations do no admit exact numerical solution except
in two cases: when the state space of (St) is finite (so-called hidden Markov
models; the integrals then turn into finite sums) and when the state-space model
is linear with additive Gaussian noise (the solution then being provided by the
Kalman filter). There are many ways to approximate these two recursions, and
here we shall examine an approach referred to as particle filters. This section
contains a full introduction neither to state-space models nor to particle filters,
and we refer to Doucet et al. (2001) for a more complete coverage of both.

The basic idea of a particle filter is to approximate the filter and predic-
tive distributions with the empirical distributions of a set of particles, whose
positions are dynamically updated in time. There is not just one particle filter
algorithm—the term rather refers to a framework for algorithms—and the par-
ticular algorithm we look at here is usually denoted the bootstrap particle filter.
We now describe how this algorithm works; the parameter θ and population size
N are fixed throughout.

Assume that at some time index t we have available a collection
(ξθ,Nt|t−1,i)1≤i≤N of particles whose empirical distribution approximates πθt|t−1.

The transformation (B.19) is approximated as follows.
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(a) Weighting. Compute unnormalised weights w̃θ,Nt,i = rθ(yt|ξθ,Nt|t−1,i) and then

normalised weights wθ,Nt,i = w̃θ,Nt,i /
∑

j w̃
θ,N
t,j .

(b) Resampling. Create a sample (ξθ,Nt|t,i)1≤i≤N by sampling N times indepen-

dently from (ξθ,Nt|t−1,i)1≤i≤N with weights (wθ,Nt,i )1≤i≤N .

The empirical distribution of the sample (ξθ,Nt|t,i)1≤i≤N obtained in the resampling

step approximates πθt|t.

The transformation (B.20) is approximated as follows.

(c) Mutation. Create a sample (ξθ,Nt+1|t,i)1≤i≤N by independently sampling

ξθ,Nt+1|t,i from Qθ(ξ
θ,N
t|t,i , ·).

The procedure is initialised at time t = 0 by letting (ξθ,N1|0,i)1≤i≤N be an i.i.d.

sample of size N from the initial distribution Pθ(S1 ∈ ·) of the state process.
This distribution may depend on θ but is otherwise assumed known.

The book by Del Moral (2004) is a thorough treatise of theoretical properties
of particle filters, and in particular its Theorem 7.4.4 shows that Hypothesis 4
holds, provided that for each yt, rθ(yt|s) is bounded in θ and s. We are here
particularly interested in the particle approximations of the predictive distri-
butions, and the update of these can be summarised as follows: compute the
normalised weights wθ,Nt,i and then sample for 1 ≤ i ≤ N , independently, first

an index j with probability wθ,Nt,j and then ξθ,Nt+1|t,i ∼ Qθ(ξ
θ,N
t|t−1,j).

We will now run, simultaneously, two particles filters of sizes N ′ > N respec-
tively. All other properties of the filers—data, parameters, dynamics—agree.
The joint dynamics of the filters will be coupled in a way such that many par-
ticles of the two filters, at any given time index, coincide. Indeed, for each time

index t we define a partition Jt ∪Jct of {1, 2, . . . , N ′} such that ξθ,Nt|t−1,i = ξθ,N
′

t|t−1,i

for i ∈ Jt. The details of the coupling are as follows.

(i) Initialisation. Sample (ξθ,N
′

1|0,i )1≤i≤N ′ independently from Pθ(S1 ∈ ·), let

ξθ,N1|0,i = ξθ,N
′

1|0,i for 1 ≤ i ≤ N and let J1 = {1, 2, . . . , N}, Jc1 = {N + 1, N +

2, . . . , N ′}.

(ii) Recursion from t to t+1. We have ξθ,Nt|t−1,i = ξθ,N
′

t|t−1,i for i ∈ Jt and compute

the weights (wθ,Nt,i )1≤i≤N and (wθ,N
′

t,i )1≤i≤N ′ .

When sampling the new particles, we couple the two filters in a way such
that independently for each 1 ≤ i ≤ N , one of the events below take place
(index j has the same meaning as above):

– for j ∈ Jt,

– ξθ,Nt+1|t,i = ξθ,N
′

t+1|t,i ∼ Qθ(ξ
θ,N
t|t−1,j , ·) with probability wθ,Nt,j ∧ wθ,N

′

t,j ;

– ξθ,Nt+1|t,i ∼ Qθ(ξ
θ,N
t|t−1,j , ·) with probability wθ,Nt,j − wθ,Nt,j ∧ wθ,N

′

t,j ;

– ξθ,N
′

t+1|t,i ∼ Qθ(ξ
θ,N ′

t|t−1,j , ·) with probability wθ,N
′

t,j − wθ,Nt,j ∧wθ,N
′

t,j ;
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– for j ∈ Jct ∩ {1, 2, . . . , N},
– ξθ,Nt+1|t,i ∼ Qθ(ξ

θ,N
t|t−1,j , ·) with probability wθ,Nt,j ;

– ξθ,N
′

t+1|t,i ∼ Qθ(ξ
θ,N ′

t|t−1,j , ·) with probability wθ,N
′

t,j .

Finally, for N < i ≤ N ′, ξθ,N
′

t+1|t,i ∼ Qθ(ξ
θ,N ′

t|t−1,j , .) with probability wθ,N
′

t,j .

We let Jt+1 be the set of indices 1 ≤ i ≤ N such that the first of the above
events happened.

From this construction it is immediate that the distributions of the two
filters are the same as if they had been run separately and independently in the
usual manner. Let πθ,Nt|t−1 be the particle filter approximation to the predictive

distribution at time index t;

πθ,Nt|t−1(A) =
1

N

N
∑

i=1

IA(ξθ,Nt|t−1,i)

for all A ∈ B(Θ), where IA is the indicator function of A.

Proposition B.1. Assume that observations y1:T are given and that there is a
number r > 0 such that r ≤ rθ(yt|s) ≤ 1/r for all 1 ≤ t ≤ T , all s in the state
space and all θ ∈ Θ. Then there are constants Ct for 1 ≤ t ≤ T such that for
any integers N ′ > N > 0,

E‖πθ,Nt|t−1 − πθ,N
′

t|t−1‖TV ≤ Ct

(

N ′ −N

N

)

.

The constants Ct depend on r, but otherwise the bound is uniform in θ.
Therefore this result implies (B.18) for ψN (θ) =

∫

h(s)πθ,Nt|t−1(ds) whenever h is

bounded on the state space of (St).

The requirement of a lower bound r > 0 on rθ, uniform in θ and s, will
typically be satisfied only if both Θ and the state space of (St) are compact,
or at least bounded. Boundedness of Θ is as good as implied by Hypothesis 1,
whereas boundedness of the state space is a more serious limitation. Having
said that we notice that this condition is recurring in the literature on particle
filters, in particular when treating forgetting properties.

Proof of Proposition B.1. For any A ∈ B(Θ),

|πθ,Nt|t−1(A) − πθ,N
′

t|t−1(A)| ≤

∣

∣

∣

∣

∣

∣

1

N

N
∑

i=1

IA(ξθ,Nt|t−1) −
1

N ′

N ′
∑

i=1

IA(ξθ,N
′

t|t−1)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

i∈Jt

IA(ξθ,Nt|t−1)

(

1

N
− 1

N ′

)

+
1

N

∑

i∈Jc
t , i≤N

IA(ξθ,Nt|t−1) +
1

N ′

∑

i∈Jc
t

IA(ξθ,N
′

t|t−1)

∣

∣

∣

∣

∣

≤ #Jt

(

1

N
− 1

N ′

)

+ #Jct

(

1

N
+

1

N ′

)

≤ 1 − N

N ′ + #Jct

(

1

N
+

1

N ′

)

, (B.21)
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where # denotes cardinality of a set and, in the last step, #Jt was bounded by
N . We now seek to bound E(#Jct ).

Put pt = 1 − #Jt/N
′ and define the σ-field Ft = σ(ξθ,Nt|t−1,i, 1 ≤ i ≤ N) ∨

σ(ξθ,N
′

t|t−1,i, 1 ≤ i ≤ N ′). Then conditionally on Ft, #Jt+1 is a binomial random

variable with parameters N and
∑

i∈Jt
(wθ,Nt,i ∧ wθ,N

′

t,i ). Using the definition of
Jt and abbreviating rθ(yt|s) as rt,θ(s), we find that

∑

i∈Jt

wθ,Nt,i ∧ wθ,N
′

t,i =

∑

i∈Jt
rθ,t(ξ

θ,N
t|t−1,i)

∑

1≤i≤N rθ,t(ξ
θ,N
t|t−1,i)

(

1 ∧
∑

1≤i≤N rθ,t(ξ
θ,N
t|t−1,i)

∑

1≤i≤N ′ rθ,t(ξ
θ,N ′

t|t−1,i)

)

=









1

1 +

∑

i∈Jc
t , i≤N rθ,t(ξ

θ,N
t|t−1,i

)
∑

i∈Jt
rθ,t(ξ

θ,N
t|t−1,i

)









×









1 ∧
1 +

∑

i∈Jc
t , i≤N rθ,t(ξ

θ,N
t|t−1,i

)
∑

i∈Jt
rθ,t(ξ

θ,N
t|t−1,i

)

1 +

∑

i∈Jc
t
rθ,t(ξ

θ,N′

t|t−1,i
)

∑

i∈Jt
rθ,t(ξ

θ,N
t|t−1,i

)









≥ 1

1 + r−2 pt

1−pt

× 1

1 + r−2 pt

1−pt

=
1

(

1 + r−2 pt

1−pt

)2 =: u(pt).

We note that as u is convex and decreasing with u(0) = 1, there exists a constant
Cu > 0 such that u(p) ≥ 1 − Cup.

The above-mentioned conditional binomial distribution of #Jt implies, to-
gether with the above inequality, that E(#Jt+1 | Ft) ≥ Nu(pt), and therefore

E(pt+1 | Ft) ≤ 1 − Nu(pt)

N ′

= 1 − u(pt) +
N ′ −N

N ′ u(pt)

≤ 1 − u(pt) +
N ′ −N

N ′

=: v(p).

Applying this inequality recursively, it follows that E(pt) ≤ v◦t(p0), where su-
perindex ‘◦t’ means t-fold function composition.

We notice that p0 = (N ′−N)/N ′ and v(p) ≤ Cup+p0 ≤ Cv(p+p0) for some
constant Cv, and by induction we find that there is a constant Cv,t such that
v◦t(p) ≤ Cv,t(p+ p0). Thus E(#Jct ) = N ′

E(pt) ≤ 2N ′Cv,tp0 = 2Cv,t(N
′ −N).

The proof is finished by inserting this bound into the right-hand side of (B.21),
then taking the supremum over A ∈ P(Θ) on the left-hand side and finally the
expectation.
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