Internal stabilization of the plate equation in a square : the continuous and the semi-discretized problems. - Archive ouverte HAL
Article Dans Une Revue Journal de Mathématiques Pures et Appliquées Année : 2006

Internal stabilization of the plate equation in a square : the continuous and the semi-discretized problems.

Résumé

This paper is devoted to the study of the internal stabilization of the Bernoulli-Euler plate equation in a square. The continuous and the space semi-discretizated problems are successively considered and analyzed using a frequency domain approach. For the infinite dimensional problem, we provide a new proof of the exponential stability result, based on a two dimensional Ingham's type result. In the second and main part of the paper, we propose a finite difference space semi-discretization scheme and we prove that this scheme yields a uniform exponential decay rate (with respect to the mesh size).
Fichier principal
Vignette du fichier
RTT_JMPA_HAL.pdf (275.53 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00091373 , version 1 (26-02-2013)

Identifiants

Citer

Karim Ramdani, Takeo Takahashi, Marius Tucsnak. Internal stabilization of the plate equation in a square : the continuous and the semi-discretized problems.. Journal de Mathématiques Pures et Appliquées, 2006, 85 (1), pp.17-37. ⟨10.1016/j.matpur.2005.10.006⟩. ⟨hal-00091373⟩
300 Consultations
98 Téléchargements

Altmetric

Partager

More