Dubins' problem on surfaces. I. Nonnegative curvature - Archive ouverte HAL
Article Dans Une Revue Journal of Geometric Analysis Année : 2005

Dubins' problem on surfaces. I. Nonnegative curvature

Résumé

Let $M$ be a complete, connected, two-dimensional Riemannian manifold. Consider the following question: Given any $(p_1,v_1)$ and $(p_2,v_2)$ in $TM$, is it possible to connect $p_1$ to $p_2$ by a curve $\gamma$ in $M$ with arbitrary small geodesic curvature such that, for $i=1,2$, $\dot \gamma$ is equal to $v_i$ at $p_i$? In this paper, we bring a positive answer to the question if $M$ verifies one of the following three conditions: (a) $M$ is compact, (b) $M$ is asymptotically flat, (c) $M$ has bounded non negative curvature outside a compact subset.
Fichier non déposé

Dates et versions

hal-00091323 , version 1 (05-09-2006)

Identifiants

  • HAL Id : hal-00091323 , version 1

Citer

Yacine Chitour, Mario Sigalotti. Dubins' problem on surfaces. I. Nonnegative curvature. Journal of Geometric Analysis, 2005, 15, pp.565-587. ⟨hal-00091323⟩
121 Consultations
0 Téléchargements

Partager

More