m-order integrals and generalized Ito's formula; the case of a fractional Brownian motion with any Hurst index - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Année : 2005

m-order integrals and generalized Ito's formula; the case of a fractional Brownian motion with any Hurst index

Résumé

Given an integer m, a probability measure ν on [0,1], a process X and a real function g, we define the m-order ν-integral having as integrator X and as integrand g(X). In the case of the fractional Brownian motion B, for any locally bounded function g, the corresponding integral vanishes for all odd indices m>1/2H and any symmetric ν. One consequence is an Itô–Stratonovich type expansion for the fractional Brownian motion with arbitrary Hurst index 01/6.
Fichier principal
Vignette du fichier
m-inte-ito.pdf (266.15 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00091310 , version 1 (05-09-2006)

Identifiants

Citer

Mihai Gradinaru, Ivan Nourdin, Francesco Russo, Pierre Vallois. m-order integrals and generalized Ito's formula; the case of a fractional Brownian motion with any Hurst index. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2005, 41, pp.781-806. ⟨10.1016/j.anihpb.2004.06.002⟩. ⟨hal-00091310⟩
479 Consultations
776 Téléchargements

Altmetric

Partager

More