Robust stabilization in the Martinet case - Archive ouverte HAL
Article Dans Une Revue Control and Cybernetics Année : 2006

Robust stabilization in the Martinet case

Résumé

In a previous work, we derived a result of semi-global minimal time robust stabilization for analytic control systems with controls entering linearly, by means of a hybrid state feedback law, under the main assumption of the absence of minimal time singular trajectories. In this paper, we investigate the Martinet case, which is a model case in $\R^3$ where singular minimizers appear, and show that such a stabilization result still holds. Namely, we prove that the solutions of the closed-loop system converge to the origin in quasi minimal time (for a given bound on the controller) with a robustness property with respect to small measurement noise, external disturbances and actuator errors.
Fichier principal
Vignette du fichier
marhybr.pdf (201.42 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00086365 , version 1 (18-07-2006)

Identifiants

  • HAL Id : hal-00086365 , version 1

Citer

Christophe Prieur, Emmanuel Trélat. Robust stabilization in the Martinet case. Control and Cybernetics, 2006, 35 (4), pp.923--945. ⟨hal-00086365⟩
260 Consultations
59 Téléchargements

Partager

More