Genericity results for singular curves - Archive ouverte HAL
Article Dans Une Revue Journal of Differential Geometry Année : 2006

Genericity results for singular curves

Yacine Chitour
Frédéric Jean

Résumé

Let $M$ be a smooth manifold and ${\cal D}_m$, $m\geq 2$, be the set of rank $m$ distributions on $M$ endowed with the Whitney $C^\infty$ topology. We show the existence of an open set $O_m$ dense in ${\cal D}_m$, so that, every nontrivial singular curve of a distribution $D$ of $O_m$ is of minimal order and of corank one. In particular, for $m\geq 3$, every distribution of $O_m$ does not admit nontrivial rigid curves. As a consequence, for generic sub-Riemannian structures of rank greater than or equal to three, there does not exist nontrivial minimizing singular curves.
Fichier principal
Vignette du fichier
CJT.pdf (263.32 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00086357 , version 1 (18-07-2006)

Identifiants

Citer

Yacine Chitour, Frédéric Jean, Emmanuel Trélat. Genericity results for singular curves. Journal of Differential Geometry, 2006, 73 (1), pp.45-73. ⟨10.4310/jdg/1146680512⟩. ⟨hal-00086357⟩
165 Consultations
170 Téléchargements

Altmetric

Partager

More