Sample Path Properties of Bifractional Brownian Motion - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2007

Sample Path Properties of Bifractional Brownian Motion

Résumé

Let BH, K={BH, K(t), t \in R +} be a bifractional Brownian motion in R d. We prove that BH, K is strongly locally non-deterministic. Applying this property and a stochastic integral representation of BH, K, we establish Chung's law of the iterated logarithm for BH, K, as well as sharp Hölder conditions and tail probability estimates for the local times of BH, K. We also consider the existence and regularity of the local times of the multiparameter bifractional Brownian motion BH̅, K̅={BH̅, K̅(t), t \in R +N} in R d using the Wiener–Itô chaos expansion.
Fichier principal
Vignette du fichier
BiFbm5.pdf (295.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00083060 , version 1 (29-06-2006)
hal-00083060 , version 2 (04-12-2007)

Identifiants

Citer

Ciprian A. Tudor, Yimin Xiao. Sample Path Properties of Bifractional Brownian Motion. Bernoulli, 2007, 13 (4), pp.1023-1052. ⟨10.3150/07-BEJ6110⟩. ⟨hal-00083060v2⟩
2683 Consultations
308 Téléchargements

Altmetric

Partager

More