Significant edges in the case of a non-stationary Gaussian noise - Archive ouverte HAL
Article Dans Une Revue Pattern Recognition Année : 2007

Significant edges in the case of a non-stationary Gaussian noise

Résumé

In this paper, we propose an edge detection technique based on some local smoothing of the image followed by a statistical hypothesis testing on the gradient. An edge point being defined as a zero-crossing of the Laplacian, it is said to be a significant edge point if the gradient at this point is larger than a threshold $s(\eps)$ defined by: if the image $I$ is pure noise, then $\P(\norm{\nabla I}\geq s(\eps) \bigm| \Delta I = 0) \leq\eps$. In other words, a significant edge is an edge which has a very low probability to be there because of noise. We will show that the threshold $s(\eps)$ can be explicitly computed in the case of a stationary Gaussian noise. In images we are interested in, which are obtained by tomographic reconstruction from a radiograph, this method fails since the Gaussian noise is not stationary anymore. But in this case again, we will be able to give the law of the gradient conditionally on the zero-crossing of the Laplacian, and thus compute the threshold $s(\eps)$. We will end this paper with some experiments and compare the results with the ones obtained with some other methods of edge detection.
Fichier principal
Vignette du fichier
contours_revised.pdf (2.28 Mo) Télécharger le fichier
elsart-num.bst (23.44 Ko) Télécharger le fichier
elsart.cls (53.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Autre
Format Autre
Loading...

Dates et versions

hal-00079148 , version 1 (09-06-2006)
hal-00079148 , version 2 (07-12-2006)

Identifiants

Citer

Isabelle Abraham, Romain Abraham, Agnes Desolneux, Sebastien Li-Thiao-Te. Significant edges in the case of a non-stationary Gaussian noise. Pattern Recognition, 2007, 40, pp.3277-3291. ⟨10.1016/j.patcog.2007.02.015⟩. ⟨hal-00079148v2⟩
319 Consultations
191 Téléchargements

Altmetric

Partager

More