Frontier estimation via kernel regression on high power-transformed data - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2006

Frontier estimation via kernel regression on high power-transformed data

Résumé

We present a new method for estimating the frontier of a multidimensional sample. The estimator is based on a kernel regression on the power-transformed data. We assume that the exponent of the transformation goes to infinity while the bandwidth of the kernel goes to zero. We give conditions on these two parameters to obtain almost complete convergence and asymptotic normality. The good performance of the estimator is illustrated on some finite sample situations.
Fichier principal
Vignette du fichier
girard_jacob.pdf (184.38 Ko) Télécharger le fichier

Dates et versions

hal-00077683 , version 1 (31-05-2006)
hal-00077683 , version 2 (09-01-2007)
hal-00077683 , version 3 (10-01-2007)

Identifiants

  • HAL Id : hal-00077683 , version 1

Citer

Stéphane Girard, Pierre Jacob. Frontier estimation via kernel regression on high power-transformed data. 2006. ⟨hal-00077683v1⟩
310 Consultations
390 Téléchargements

Partager

More