N-complexes as functors, amplitude cohomology and fusion rules - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2006

N-complexes as functors, amplitude cohomology and fusion rules

Résumé

We consider N-complexes as functors over an appropriate linear category in order to show first that the Krull-Schmidt Theorem holds, then to prove that amplitude cohomology only vanishes on injective functors providing a well defined functor on the stable category. For left truncated N-complexes, we show that amplitude cohomology discriminates the isomorphism class up to a projective functor summand. Moreover amplitude cohomology of positive N-complexes is proved to be isomorphic to an Ext functor of an indecomposable N-complex inside the abelian functor category. Finally we show that for the monoidal structure of N-complexes a Clebsch-Gordan formula holds, in other words the fusion rules for N-complexes can be determined.
Fichier principal
Vignette du fichier
CIBILS.SOLOTAR.WISBAUER.2006.06.16.pdf (193.56 Ko) Télécharger le fichier

Dates et versions

hal-00070840 , version 1 (21-05-2006)
hal-00070840 , version 2 (18-06-2006)
hal-00070840 , version 3 (30-09-2006)

Identifiants

Citer

Claude Cibils, Andrea Solotar, Robert Wisbauer. N-complexes as functors, amplitude cohomology and fusion rules. 2006. ⟨hal-00070840v2⟩
203 Consultations
351 Téléchargements

Altmetric

Partager

More