Three-dimensional finite element computations for frictional contact problems with non-associated sliding rule - Archive ouverte HAL Access content directly
Journal Articles International Journal for Numerical Methods in Engineering Year : 2004

Three-dimensional finite element computations for frictional contact problems with non-associated sliding rule

Mohammed Hjiaj
Z.Q. Feng
Z. Mroz
  • Function : Author

Abstract

This paper presents an algorithm for solving anisotropic frictional contact problems where the sliding rule is non-associated.The algorithm is based on a variational formulation of the complex interface model that combine the classical unilateral contact law and an anisotropic friction model with a non-associated slip rule. Both the friction condition and the sliding potential are elliptical and have the same principal axes but with different semi-axes ratio. The frictional contact law and its inverse are derived from a single non-differentiable scalar-valued function, called a bi-potential. The convexity properties of the bi-potential permit to associate stationary principles with initial/boundary value problems. With the present formulation, the time-integration of the frictional contact law takes the form of a projection onto a convex set and only one predictor-corrector step addresses all cases (sticking, sliding, no-contact). A solution algorithm is presented and tested on a simple example that shows the strong influence of the slip rule on the frictional behaviour.
No file

Dates and versions

hal-00069709 , version 1 (19-05-2006)

Identifiers

  • HAL Id : hal-00069709 , version 1

Cite

Mohammed Hjiaj, Z.Q. Feng, Géry de Saxcé, Z. Mroz. Three-dimensional finite element computations for frictional contact problems with non-associated sliding rule. International Journal for Numerical Methods in Engineering, 2004, 60, pp.2045-2076. ⟨hal-00069709⟩

Collections

CNRS
109 View
0 Download

Share

Gmail Facebook X LinkedIn More