The width of resonances for slowly varying perturbations of one-dimensional periodic Schrödinger operators
Résumé
In this talk, we report on results about the width of the resonances for a slowly varying perturbation of a periodic operator. The study takes place in dimension one. The perturbation is assumed to be analytic and local in the sense that it tends to a constant at $+\infty$ and at $-\infty$; these constants may differ. Modulo an assumption on the relative position of the range of the local perturbation with respect to the spectrum of the background periodic operator, we show that the width of the resonances is essentially given by a tunneling effect in a suitable phase space.