Probabilistic approach for granular media equations in the non uniformly convex case.
Résumé
We use here a particle system to prove a convergence result as well as a deviation inequality for solutions of granular media equation when the confinement potential and the interaction potential are no more uniformly convex. Proof is straightforward, simplifying deeply proofs of Carrillo-McCann-Villani \cite{CMV,CMV2} and completing results of Malrieu \cite{malrieu03} in the uniformly convex case. It relies on an uniform propagation of chaos property and a direct control in Wasserstein distance of solutions starting with different initial measures. The deviation inequality is obtained via a $T_1$ transportation cost inequality replacing the logarithmic Sobolev inequality which is no more clearly dimension free.
Loading...