Tunable intertube spacing in single-walled carbon nanotube bundles.
Résumé
The structure of ternary compounds involving alkali, tetrahydrofuran (THF) and single-walled carbon nanotubes have been investigated using neutron diffraction (ND). Hydrogen-deuterium substitution in THF, as well as the study of different alkali-based compounds, allow a layered structure around the nanotubes to be determined. ND results indicate that the alkali cations form a monolayer surrounding each tube of the bundle, while THF molecules intercalate between the decorated tubes and at the surface of the bundles. In spite of this insertion, the triangular bundle structure is preserved, albeit with a much larger lattice parameter, which depends on the size of the inserted cation.