Deviation bounds for additive functionals of Markov processes
Résumé
In this paper we derive non asymptotic deviation bounds for $$\P_\nu (|\frac 1t \int_0^t V(X_s) ds - \int V d\mu | \geq R)$$ where $X$ is a $\mu$ stationary and ergodic Markov process and $V$ is some $\mu$ integrable function. These bounds are obtained under various moments assumptions for $V$, and various regularity assumptions for $\mu$. Regularity means here that $\mu$ may satisfy various functional inequalities (F-Sobolev, generalized Poincaré etc...).