Homogenization of first order equations with $u/\epsilon$-periodic Hamiltonians. Part I: local equations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2006

Homogenization of first order equations with $u/\epsilon$-periodic Hamiltonians. Part I: local equations

Résumé

In this paper, we present a result of homogenization of first order Hamilton-Jacobi equations with ($u/\varepsilon$)-periodic Hamiltonians. On the one hand, under a coercivity assumption on the Hamiltonian (and some natural regularity assumptions), we prove an ergodicity property of this equation and the existence of non periodic approximate correctors. On the other hand, the proof of the convergence of the solution, usually based on the introduction of a perturbed test function in the spirit of Evans' work, uses here a twisted perturbed test function for a higher dimensional problem.
Fichier principal
Vignette du fichier
homog-hjulocal2.pdf (383.12 Ko) Télécharger le fichier

Dates et versions

hal-00016270 , version 1 (22-01-2006)
hal-00016270 , version 2 (06-02-2006)
hal-00016270 , version 3 (15-05-2007)

Identifiants

  • HAL Id : hal-00016270 , version 2

Citer

Cyril Imbert, Régis Monneau. Homogenization of first order equations with $u/\epsilon$-periodic Hamiltonians. Part I: local equations. 2006. ⟨hal-00016270v2⟩

Collections

CERMICS
534 Consultations
556 Téléchargements

Partager

More