Weak logarithmic Sobolev inequalities and entropic convergence
Résumé
In this paper we introduce and study a weakened form of logarithmic Sobolev inequalities in connection with various others functional inequalities (weak Poincaré inequalities, general Beckner inequalities...). We also discuss the quantitative behaviour of relative entropy along a symmetric diffusion semi-group. In particular, we exhibit an example where Poincaré inequality can not be used for deriving entropic convergence whence weak logarithmic Sobolev inequality ensures the result.
Domaines
Probabilités [math.PR]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...