Galois algebras of squeezed quantum phase states - Archive ouverte HAL
Article Dans Une Revue Journal of Optics B Quantum and Semiclassical Optics Année : 2005

Galois algebras of squeezed quantum phase states

Résumé

Coding, transmission and recovery of quantum states with high security and efficiency, and with as low fluctuations as possible, is the main goal of quantum information protocols and their proper technical implementations. The paper deals with this topic, focusing on the quantum states related to Galois algebras. We first review the constructions of complete sets of mutually unbiased bases in a Hilbert space of dimension q = pm, with p being a prime and m a positive integer, employing the properties of Galois fields Fq (for p > 2) and/or Galois rings of characteristic four R4m (for p = 2). We then discuss the Gauss sums and their role in describing quantum phase fluctuations. Finally, we examine an intricate connection between the concepts of mutual unbiasedness and maximal entanglement.
Fichier principal
Vignette du fichier
newiccssur.pdf (151.15 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00013307 , version 1 (07-11-2005)

Identifiants

Citer

Michel R. P. Planat, Metod Saniga. Galois algebras of squeezed quantum phase states. Journal of Optics B Quantum and Semiclassical Optics, 2005, 7, pp.S484-S489. ⟨10.1088/1464-4266/7/12/008⟩. ⟨hal-00013307⟩
141 Consultations
118 Téléchargements

Altmetric

Partager

More