New M-estimators in semiparametric regression with errors in variables - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Année : 2008

New M-estimators in semiparametric regression with errors in variables

Résumé

In the regression model with errors in variables, we observe $n$ i.i.d. copies of $(Y,Z)$ satisfying $Y=f_{\theta^0}(X)+\xi$ and $Z=X+\varepsilon$ involving independent and unobserved random variables $X,\xi,\varepsilon$ plus a regression function $f_{\theta^0}$, known up to some finite dimensional $\theta^0$. The common densities of the $X_i$'s and of the $\xi_i$'s are unknown whereas the distribution of $\varepsilon$ is completely known. We aim at estimating the parameter $\theta^0$ by using the observations $(Y_1,Z_1),\cdots, (Y_n,Z_n)$. We propose two estimation procedures based on the least square criterion $\tilde S_{\theta^0,g}(\theta)=\mathbb{E}_{\theta^0,g}[((Y-f_\theta(X))^2w(X)]$ where $w$ is some weight function, to be chosen. In the first estimation procedure, $w$ does not depend on $\theta$ and the distribution of the $\xi$'s is unknown. The second estimation procedure is based on $S_{\theta^0,g}(\theta)=\mathbb{E}_{\theta^0,g}[((Y-f_\theta(X))^2-\sigma_{\xi,2}^2)w_\theta(X)]$ where $w_\theta$ is positive weight function, to be chosen, and requires the knowledge of $\sigma_{\xi,2}^2=\mbox{Var}(\xi)$. In both cases, we propose two estimators and derive upper bounds for the risk of those estimators, depending on the smoothness of the errors density $p_\varepsilon$ and on the smoothness properties of $w(x)f_\theta(x)$ or $w_\theta(x)f_\theta(x)$ with respect to $x$. Furthermore we give sufficient conditions that ensure that the parametric rate of convergence is achieved. We provide practical recipes for the choice of $w$ or $ w_\theta$ in the case of nonlinear regressionfunctions which are smooth on pieces allowing to gain in the order of the rate of convergence, up to the parametric rate in some cases.
Fichier principal
Vignette du fichier
butuceataupin.pdf (408.54 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00013229 , version 1 (04-11-2005)
hal-00013229 , version 2 (04-11-2005)

Identifiants

Citer

Cristina Butucea, Marie-Luce Taupin. New M-estimators in semiparametric regression with errors in variables. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2008, 44 (3), pp.393-421. ⟨hal-00013229v2⟩
418 Consultations
176 Téléchargements

Altmetric

Partager

More