Convexity of solutions and $C^{1,1}$ estimates for fully nonlinear elliptic equations - Archive ouverte HAL
Article Dans Une Revue Journal de Mathématiques Pures et Appliquées Année : 2006

Convexity of solutions and $C^{1,1}$ estimates for fully nonlinear elliptic equations

Résumé

The starting point of this work is a paper by Alvarez, Lasry and Lions (1997) concerning the convexity and the partial convexity of viscosity solutions of fully nonlinear degenerate elliptic equations. We extend their results in two directions. First, we deal with possibly sublinear (but epi-pointed) solutions instead of $1$-coercive ones; secondly, the partial convexity of $C^2$ solutions is extended to the class of continuous viscosity solutions. A third contribution of this paper concerns $C^{1,1}$ estimates for convex viscosity solutions of strictly elliptic nonlinear equations. To finish with, all the tools and techniques introduced here permit us to give a new proof of the Alexandroff estimate obtained by Trudinger (1988) and Caffarelli (1989).
Fichier principal
Vignette du fichier
visconv-hal2.pdf (266.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00012969 , version 1 (01-12-2005)
hal-00012969 , version 2 (04-05-2009)

Identifiants

Citer

Cyril Imbert. Convexity of solutions and $C^{1,1}$ estimates for fully nonlinear elliptic equations. Journal de Mathématiques Pures et Appliquées, 2006, 85, pp.791-807. ⟨10.1016/j.matpur.2006.01.003⟩. ⟨hal-00012969v2⟩
135 Consultations
477 Téléchargements

Altmetric

Partager

More