The control transmutation method and the cost of fast controls - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Control and Optimization Année : 2006

The control transmutation method and the cost of fast controls

Résumé

In this paper, the null controllability in any positive time T of the first-order equation (1) x'(t)=e^{i\theta}Ax(t)+Bu(t) (|\theta|<\pi/2 fixed) is deduced from the null controllability in some positive time L of the second-order equation (2) z''(t)=Az(t)+Bv(t). The differential equations (1) and (2) are set in a Banach space, B is an admissible unbounded control operator, and A is a generator of cosine operator function. The control transmutation method explicits the input function u of (1) in terms of the input function v of (2): u(t,x)=\int k(t,s)v(s)ds, where the compactly supported kernel k depends on T and L only. It proves that the norm of a u steering the system (1) from an initial state x_{0} to zero grows at most like ||x_{0}||\exp(\alpha_{*}L^{2}/T) as the control time T tends to zero. (The rate \alpha_{*} is characterized independently by a one-dimensional controllability problem.) In the applications to the cost of fast controls for the heat equation, L is the length of the longest ray of geometric optics which does not intersect the control region.
Fichier principal
Vignette du fichier
Miller.ctm.HAL.01.03.06.pdf (240.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00009083 , version 1 (01-03-2006)
hal-00009083 , version 2 (04-09-2015)

Identifiants

Citer

Luc Miller. The control transmutation method and the cost of fast controls. SIAM Journal on Control and Optimization, 2006, 45 (2), pp.762-772. ⟨10.1137/S0363012904440654⟩. ⟨hal-00009083v2⟩
397 Consultations
196 Téléchargements

Altmetric

Partager

More