Lifshitz Tails in Constant Magnetic Fields - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2005

Lifshitz Tails in Constant Magnetic Fields

Résumé

We consider the 2D Landau Hamiltonian $H$ perturbed by a random alloy-type potential, and investigate the Lifshitz tails, i.e. the asymptotic behavior of the corresponding integrated density of states (IDS) near the edges in the spectrum of $H$. If a given edge coincides with a Landau level, we obtain different asymptotic formulae for power-like, exponential sub-Gaussian, and super-Gaussian decay of the one-site potential. If the edge is away from the Landau levels, we impose a rational-flux assumption on the magnetic field, consider compactly supported one-site potentials, and formulate a theorem which is analogous to a result obtained in the case of a vanishing magnetic field.
Fichier principal
Vignette du fichier
nvtls5.pdf (418.57 Ko) Télécharger le fichier

Dates et versions

hal-00008636 , version 1 (12-09-2005)

Identifiants

Citer

Frédéric Klopp, Georgi Raikov. Lifshitz Tails in Constant Magnetic Fields. 2005. ⟨hal-00008636⟩
161 Consultations
149 Téléchargements

Altmetric

Partager

More