Local Euler-Maclaurin formula for polytopes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2006

Local Euler-Maclaurin formula for polytopes

Résumé

We give a local Euler-Maclaurin formula for rational convex polytopes in a rational euclidean space . For every affine rational polyhedral cone C in a rational euclidean space W, we construct a differential operator of infinite order D(C) on W with constant rational coefficients, which is unchanged when C is translated by an integral vector. Then for every convex rational polytope P in a rational euclidean space V and every polynomial function f (x) on V, the sum of the values of f(x) at the integral points of P is equal to the sum, for all faces F of P, of the integral over F of the function D(N(F)).f , where we denote by N(F) the normal cone to P along F.
Fichier principal
Vignette du fichier
EMLcorrigeJuillet.pdf (361.38 Ko) Télécharger le fichier

Dates et versions

hal-00007488 , version 1 (12-07-2005)
hal-00007488 , version 2 (06-06-2006)
hal-00007488 , version 3 (04-07-2006)

Identifiants

Citer

Nicole Berline, Michèle Vergne. Local Euler-Maclaurin formula for polytopes. 2006. ⟨hal-00007488v3⟩
166 Consultations
290 Téléchargements

Altmetric

Partager

More