Positive energy-momentum theorem in asymptotically anti de Sitter space-times - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2005

Positive energy-momentum theorem in asymptotically anti de Sitter space-times

Résumé

This paper proves a positive energy-momentum theorem for oriented Riemannian 3-manifolds that are asymptotic to a standard hyperbolic slice in anti de Sitter space-time. Analogously to the original Witten's proof in the asymptotically flat case, this result relies on spinorial methods. We also give a rigidity theorem: if the energy-momentum is degenerate (in a certain sense) then our 3-manifold can be isometrically embedded in anti de Sitter.
Fichier principal
Vignette du fichier
version1.pdf (277.02 Ko) Télécharger le fichier

Dates et versions

hal-00005122 , version 1 (03-06-2005)
hal-00005122 , version 2 (20-06-2005)
hal-00005122 , version 3 (24-01-2006)

Identifiants

Citer

Daniel Maerten. Positive energy-momentum theorem in asymptotically anti de Sitter space-times. 2005. ⟨hal-00005122v2⟩
84 Consultations
232 Téléchargements

Altmetric

Partager

More