The Hahn-Banach Theorem implies the existence of a non-Lebesgue measurable set - Archive ouverte HAL
Article Dans Une Revue Fundamenta Mathematicae Année : 1991

The Hahn-Banach Theorem implies the existence of a non-Lebesgue measurable set

Résumé

In this paper we present a new way for proving the existence of non-measurable sets using a convenient operation of a discrete group on the Euclidian sphere. The only choice assumption used in this construction is the Hahn-Banach theorem, a weaker hypothesis than the Boolean Prime Ideal Theorem. Our construction proves that the Hahn-Banach theorem implies the existence of a non-Lebesgue-measurable set of reals. In fact we prove (under Hahn-Banach theorem) that there is no finitely additive, rotation invariant extension of Lebesgue measure to all subsets of the three-dimensional Euclidean space.
Fichier principal
Vignette du fichier
HahnBanach.pdf (94.63 Ko) Télécharger le fichier

Dates et versions

hal-00004713 , version 1 (14-04-2005)

Identifiants

  • HAL Id : hal-00004713 , version 1

Citer

Matthew Foreman, Friedrich Wehrung. The Hahn-Banach Theorem implies the existence of a non-Lebesgue measurable set. Fundamenta Mathematicae, 1991, 138, no. 1, pp.13-19. ⟨hal-00004713⟩
304 Consultations
1918 Téléchargements

Partager

More