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§0. Introduction.
Few methods are known to construct non Lebesgue-measurable sets of reals: most

standard ones start from a well-ordering of R, or from the existence of a non-trivial ul-
trafilter over ω, and thus need the axiom of choice AC or at least the Boolean Prime
Ideal theorem BPI (see [5]). In this paper we present a new way for proving the existence
of non-measurable sets using a convenient operation of a discrete group on the Euclidian
sphere. The only choice assumption used in this construction is the Hahn-Banach theorem,
a weaker hypothesis than BPI (see [9]). Our construction proves that the Hahn-Banach
theorem implies the existence of a non-measurable set of reals. This answers questions
in [9], [10]. (Since we do not even use the countable axiom of choice, we cannot assume
the countable additivity of Lebesgue measure; e.g. the real numbers could be a countable
union of countable sets.)

In fact we prove (under Hahn-Banach theorem) that there is no finitely additive, rota-
tion invariant extension of Lebesgue measure to P(R3). Notice that Hahn-Banach implies
the existence of a finitely additive, isometry invariant extension of Lebesgue measure to
P(R2) (see [14]).

We use standard set-theoretical notation and terminology. For example, if X is any
set, P(X) is the power set of X. If A ⊆ X and f : X → Y is a map, then f [A] is the
image of A under f . Furthermore, ω is the set of all natural numbers.

We assume ZF throughout this paper; no choice assumption (even countable) is made.

§1. Definitions.
First, let us give one of the many equivalent statements of the Hahn-Banach theorem.

We use the version [11]:

The Hahn-Banach Theorem. Let E be a vector space over the reals, let S be a subspace
of E, and f be a linear functional on S. Let p be a map E → R such that whenever x, y ∈ E
and λ ≥ 0, we have p(λx) = λp(x) and p(x + y) ≤ p(x) + p(y). Then there is a linear
functional f̄ on E, extending f , such that (∀x ∈ E)(f̄(x) ≤ p(x)).

Definition. If B is a Boolean algebra, a finitely additive probability measure on B (from
now on a measure) is a map µ : B → [0, 1] such that µ(1B) = 1 and µ(x∨ y) = µ(x)+µ(y)
whenever x ∧ y = 0.

It is known that ZF+ Hahn-Banach implies that every Boolean algebra has a measure
(actually in ZF without choice, this last statement is equivalent to the Hahn-Banach the-
orem, see [7,15]). It also yields the following statement for collections of Boolean algebras:
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Proposition 1. (ZF+Hahn-Banach theorem) Let 〈Bi : i ∈ I〉 be a sequence of Boolean
algebras (with I not necessarily well-orderable). Then there exists 〈µi : i ∈ I〉 such that
for each i ∈ I, µi is a measure on Bi.

Proof. Let (B, ei)i∈I be the direct sum of (Bi)i∈I in the category of Boolean algebras:
so, for every i ∈ I, ei is an homomorphism Bi → B (elements of B are formal Boolean
combinations of elements of the Bi with no other relations than those from the Bi; one
can prove that ei is one-to-one). By the Hahn-Banach theorem there is a measure µ on B.
Put µi = µ ◦ ei.

Definition. A universally measured space is an ordered pair (Ω, µ) where Ω is a set and µ
is a measure on the Boolean algebra P(Ω). A group G is said to act by measure preserving
transformations on (Ω, µ) when G acts on Ω and µ(gA) = µ(A) for all g ∈ G and A ∈ P(Ω).

We are going to be mainly concerned about the following measure existence statement:

Definition. Let a group G act on a set Ω. IM(Ω, G) is the statement “there is a G-
invariant measure on P(Ω)”.

In the case of a group acting on itself, we get the following classical definition.

Definition. A group G is amenable when there is a measure µ on P(G) such that µ(Ag) =
µ(A) for all g ∈ G, A ∈ P(G).

Assuming the Hahn-Banach theorem many groups are amenable, including finite
groups, solvable groups and their extensions. The best known non-amenable group is
the free group on two generators.

Proposition 2. (Classical) [14] - The free group on two generators, F2, is not amenable.

For all integers n ≥ 1, denote by On the isometry group of Sn−1 (with Euclidian
norm), SOn = {u ∈ On : det(u) = +1}, where Sn = {x ∈ R

n+1 : ‖x‖ = 1} is the n-
dimensional Euclidian sphere. One can prove in ZFC that IM(Sn, SOn+1) does not hold
for n ≥ 2, and thus SOn+1 is not amenable (see [14]). On the other hand, in [10] and [13],
the authors construct models of ZF + DC in which IM(Sn, On+1) holds for every n ≥ 1
(in [13], the measure is just normalized Lebesgue-measure).

A group G acts on a set Ω freely when for all g ∈ G, x ∈ Ω, gx = x implies g = 1.

§2. The main results.
We start with a classical result.

Proposition 3. Assume IM(S2, SO3). Then there is a free measure-preserving action of
F2 on some universally measured space (Ω, µ).

Proof. Consider a subgroup of SO3 isomorphic to F2, [14] and D the subset of S2

consisting of the union of all the possible orbits of fixed points of elements of F2\{1}.
D is countable since each orbit is effectively countable and it is easy to distinguish fixed
points of elements of F2 acting on S2. Hence D is the image of a function with domain
{0, 1} × F2 × F2. (Recall, we do not know that a countable union of countable sets is

2



countable.) Let µ be the witness to IM(S2, SO3). Since F2 acts freely on S2\D, we will
be done if we can show µ(D) = 0.

In [14] it is shown that every SO3-invariant finitely additive measure on S2 gives each
countable set measure zero. We paraphrase the proof given there and check that it works
without AC.

It clearly suffices to find a rotation g such that for all k ∈ ω\{0}, gkD ∩D = ∅. Since
then {gkD : k ∈ ω} is an infinite collection of pairwise disjoint subsets of S2 of the same
µ-measure. Let 〈an : n ∈ ω〉 be an enumeration of D. Let � be a line through the origin
missing D. Let An = {g ∈ SO(3) : g is a rotation about � and for some i �= j ∈ ω,
gnai = aj}. Then An is countable in a canonical way, since each g ∈ An is determined by
ai and aj . Hence ∪An is countable. Choose a rotation g about � such that g �∈ ∪An and
g has infinite order. Then for all n ≥ 1, gnD ∩ D = ∅.

Another example is with IM(ω2, G) where ω2 is the Cantor space with its canonical
metric and G its group isometries (see [12]).

Our main theorem is:

Theorem 4. (ZF+Hahn-Banach) - Let a group G act freely and measure-preserving on
a universally measured space (Ω, µ). Then G is amenable.

Proof. (Note the similarity to [6].)
Denote by Ω/G the set of orbits of Ω modulo G.
By Proposition 1, there is a sequence 〈µ[x] : [x] ∈ Ω/G〉 such that for each [x] ∈ Ω/G,

µ[x] is a measure on P([x]). For each A ⊆ G, let a : Ω → [0, 1] be the following function:
a(x) = µ[x](Ax); define λ : P(G) → [0, 1] by λ(A) =

∫
a(x) dµ(x). Note that x �→ a(x) is

a measurable function since (Ω, µ) is a universally measured space; the integration here is
essentially Lebesgue integration, and it does not appeal to any choice (no limit theorems
are needed).

We claim that λ is a measure on P(G), invariant under right translaton.
Note that λ(G) = 1. If A, B are two disjoint subsets of G and a, b, c are the functions

corresponding to A, B, A ∪ B respectively, then (∀x ∈ Ω)(c(x) = a(x) + b(x)). Hence
λ(A ∪ B) = λ(A) + λ(B).

Finally, if B = Ag for some g ∈ G and a, b are the functions corresponding to A and
B then, for all x ∈ Ω,

b(x) = µ[x](Bx) = µ[x](Ag x)

= µ[x](A(gx)) = µ[gx](A(gx)) = a(gx) .

Hence λ(B) =
∫

b(x) dµ(x) =
∫

a(gx) dµ(x) =
∫

a(x) dµ(x) = λ(A) since g is µ-
measure preserving.

Corollary 1. - ZF+Hahn-Banach implies not IM(S2, SO3). Thus, there is a non-
Lebesgue measurable subset of S2.

Proof. Propositions 2, 3 and Theorem 4.
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Note that in the last part of the statement above, S2 could be replaced by many other
spaces, like R

n, n ≥ 1. (See §3 for details).

Corollary 2. If H is generic for the partial ordering adding ω1 random reals to a model
V of ZFC and V (R) is the smallest model of set theory containing V and reals of V [H],
then V (R) does not satisfy the Hahn-Banach theorem.

Proof. V (R) is the model considered considered by D. Pincus and R. Solovay in [10].
It satisfies IM(Sn, SOn+1) for all n ≥ 1, and thus IM(S2, SO3); we conclude by Corollary
1.

Another way to see Corollary 1 is the following:

Corollary 3. If F2 acts freely on Ω = S2\D (D as in the proof of Proposition 3) by
rotations, and if 〈µ[x] : [x] ∈ Ω/F2〉 is any assignment of finitely additive probability
measures µ[x] on P([x]), then there are A ⊆ F2 and α ∈ [0, 1] such that {x : µ[x](Ax) < α}
is not Lebesgue measurable. Further the set A can be isolated explicitly (see [14]).

§3. Appendix. Lebesgue measure without countable choice.
Ordinarily, the theory of Lebesgue measure is developed with use of ACω. The use of

ACω allows one to use arbitrary Borel sets. In this section we explore how to use “coded”
Borel sets to eliminate the necessity of ACω in many applications. For example, we would
still like the existence of non-measurable set to be independent from the reference space
( here, S2). The aim of this section is to show how to adapt the proofs of the “classical”
theory (with ACω) to the study of Lebesgue-measure in a totally choiceless context. The
ideas here date from [13].

In order to get as many measurable sets as possible, the classical outer measure con-
struction (see [4]) seems convenient enough. This construction, which we will sketch in R,
works as well in R

n or in much more abstract spaces.
Define the outer measure of A ⊆ R by the greatest lower bound of all sums∑

n∈ω
length(In) where In are intervals, and A ⊆ ⋃

n∈ω
In; call it µ∗(A). Say that A is

Lebesgue-measurable when for all X ⊆ R, µ∗(X) = µ∗(X ∩ A) + µ∗(X\A). Note
M = {A ⊆ R; A is Lebesgue-measurable}, µ = µ∗ | M. It is still possible to prove that
M is a Boolean subalgebra of P(R) and that µ is a finitely additive function M → [0,∞],
and that M contains all open sets. But one cannot prove any more that M is a σ-algebra
(since R can be a countable union of countable sets, see [5]). So, instead of considering
Borel subsets of R, consider those which have a code, as e.g. in [12]; a Borel code is essen-
tially a real, encoding the “construction” of some Borel set. Similarly, say that (An)n∈ω

is coded sequence of Borel sets when there is a sequence (cn)n∈ω such that for every n, cn

is a code for An. And then, we can prove the following properties of (µ,M):
(a) M is Boolean subalgebra of P(R), containing all coded Borel subsets of R.
(b) µ is a finitely additive map M → [0,∞], and whenever (An)n∈ω is a disjoint coded

sequence of Borel sets, we have:

µ

( ⋃
n∈ω

An

)
=

∑
n∈ω

µ(An) .
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(c) A subset A ⊆ R is in M iff for all ε > 0 and all coded Borel B with µ(B) < ∞,
there are coded Borel F and U such that F ⊆ A ∩ B ⊆ U and µ(U\F ) < ε.

(Actually, it is enough to check when B is a bounded interval, and U can be chosen
as an open set, F as a closed set.)

(d) µ is σ-finite: there is a coded sequence (An)n∈ω of Borel sets such that R =
⋃

n∈ω
An

and (∀n ∈ ω)(µ(An) < ∞). (Take An = [−n, n].)
The precautions needed by elimination of ACω in the classical proof of (a) and (d)

above (see [4]) make the proof somewhat more lengthy, but without real difficulties. Note
that in (c), the assumption µ(B) < ∞ does not seem to be removable without countable
choice.

Let us call the µ above the Lebesgue measure on R; a similar construction yields
Lebesgue measure on R

n, for all n ≥ 1.
More generally, let us set the following definition:

Definition. A coded Borel space is an ordered pair (Ω,B) where Ω is a coded Borel subset
of the Hilbert cube ω[0, 1] and B is the algebra of coded Borel subsets of Ω.

We can naturally extend this definition by taking all isomorphic images; this way,
all usual spaces of analysis - like R

n, Sn, or ω2, together with their coded Borel subsets,
become coded Borel spaces. Anyway, even without using countable choice, it turns out
that the following is true:

Proposition 5. Let (Ω,B) be an uncountable coded Borel space. Then there is a coded
Borel isomorphism from (Ω,B) onto (I,BI), where I = [0, 1] and BI is the algebra of coded
Borel subsets of I.

Here, a coded Borel isomorphism (Ω,B) → (I,BI) is naturally a bijection f : Ω → I
such that the neighborhood diagrams of f and f−1 are coded Borel.

Now, let us give the new definition of measure we are going to use:

Definition. Let (Ω,B) be a coded Borel space. A regular measure on (Ω,B) is a map
µ : M → [0,∞] such that (µ,M) satisfies conditions (a) to (d) above, with Ω instead of
R. Say that µ is nonatomic when (∀x ∈ Ω)(µ({x}) = 0).

The essential isomorphism theorem between these measure spaces is still valid (after
a suitable reformation). It can be stated the following way:

Proposition 6. Let µ be a regular, nonatomic measure on a coded Borel space (Ω,B),
with µ(Ω) = 1. Then there are N ⊆ Ω, D ⊆ [0, 1] and f : Ω → [0, 1] such that, if � is
Lebesgue measure on [0, 1],

(i) N ∈ B, D is countable, µ(N) = �(D) = 0.
(ii) f is a coded Borel isomorphism Ω\N → [0, 1]\D.
(iii) For all B in B, f [B] is coded Borel in [0, 1] and µ(B) = �(f [B]).

Outline of Proof (See [11]). First, notice that by (b) and µ(Ω) = 1, Ω is uncountable.
So, by proposition 5, without loss of generality, Ω = [0, 1] and B is the algebra of coded
Borel subsets of [0, 1]. Then, define f : [0, 1] → [0, 1] by f(x) = µ([0, x]). Then, D is just
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{y ∈ [0, 1] : f−1{y} has nonempty interior} and N is f−1[D]. (iii) is proven by induction
on a code of B, and it uses nonatomicity of µ.

Now, Proposition 6 has an immediate corollary:

Corollary 1. Let µ be a regular, nonatomic measure on a coded Borel space (Ω,B), with
µ(Ω) �= 0. Then the following are equivalent:

(i) Every subset of Ω is µ-measurable.
(ii) Every subset of [0, 1] is Lebesgue-measurable.

(To prove (i) ⇒ (ii), one has to use σ-finiteness, nonatomicity of µ and µ(Ω) �= 0; for
(ii) ⇒ (i), use characterisation (c) above of µ-measurability).

In particular, every subset of R
n (n ≥ 1) is Lebesgue-measurable iff every subset of

[0, 1] is Lebesgue-measurable (which is well-known in the classical theory using countable
choice). Let LM be the latter statement.

Now, define Lebesgue measure vn on Sn as being the image under x �→ x
‖x‖ of Lebesgue

measure on Bn+1\{0}, where Bn+1 is the Euclidian closed ball of R
n+1 of volume 1.

Corollary 2. LM implies IM(Sn, SOn+1) for all n ≥ 1.

Proof. If LM holds, then vn is defined on P(Sn) by the previous corollary; so vn

witnesses IM(Sn, SOn+1).

More precisely, the result would be the same with a rotation-invariant extension of
Lebesgue-measure on P(S2); thus, the results of the previous paragraph imply for exam-
ple that Hahn-Banach theorem implies nonexistence of a rotation-invariant extension of
Lebesgue-measure to a (finitely additive) measure on P(R3).

Further notes. Theorem 4 could be formulated as follows: “If G is a nonamenable
group acting freely on a set Ω and if µ is a G-invariant finitely additive probability
measure defined on a G-invariant subalgebra of P (Ω), then Ω has non-measurable sub-
sets (w.r.t. µ)”. Now, while this paper was printed, the second author showed, under
the same hypotheses, that in the G-equidecomposability type semigroup of Ω (see [14]),
n[Ω] = (n+1)[Ω] for some integer n, effectively computable from the number of pieces nec-
essary to a paradoxical decomposition of G. For the action of F2 described above, we can
get n = 5, which is somewhat disappointing since it is not known whether the cancellation
law (see [14]) follows from HB (it follows from BPI). But independently, J. Pawlikowski
proved using ideas from this paper, that one can actually take n = 1, that is, [Ω] = 2[Ω];
thus, HB implies the Banach-Tarski paradox. See [8] for more details.
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