Skew category, Galois covering and smash product of a $k$-category - Archive ouverte HAL
Article Dans Une Revue Proceedings of the American Mathematical Society Année : 2006

Skew category, Galois covering and smash product of a $k$-category

Eduardo N. Marcos
  • Fonction : Auteur
  • PersonId : 828683
IME

Résumé

In this paper we consider categories over a commutative ring provided either with a free action or with a grading of a not necessarily finite group. We define the smash product category and the skew category and we show that these constructions agree with the usual ones for algebras. In case of the smash product for an infinite group our construction specialized for a ring agrees with M. Beattie's construction of a ring with local units in \cite{be}. We recover in a categorical generalized setting the Duality Theorems of M. Cohen and S. Montgomery in \cite{cm}, and we provide a unification with the results on coverings of quivers and relations by E. Green in \cite{g}. We obtain a confirmation in a quiver and relations free categorical setting that both constructions are mutual inverses, namely the quotient of a free action category and the smash product of a graded category. Finally we describe functorial relations between the representation theories of a category and of a Galois cover of it.
Fichier principal
Vignette du fichier
skewgaloissmash.pdf (156.2 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00000938 , version 1 (10-12-2003)
hal-00000938 , version 2 (22-12-2003)
hal-00000938 , version 3 (10-09-2004)

Identifiants

Citer

Claude Cibils, Eduardo N. Marcos. Skew category, Galois covering and smash product of a $k$-category. Proceedings of the American Mathematical Society, 2006, 134, pp.39--50. ⟨10.1090/S0002-9939-05-07955-4⟩. ⟨hal-00000938v3⟩
200 Consultations
372 Téléchargements

Altmetric

Partager

More