Matrioshka orthogonal matching pursuit for blended seismic source separation - UMI 2958 - Axe de recherche : Computer Science Access content directly
Proceedings Year : 2017

Matrioshka orthogonal matching pursuit for blended seismic source separation

Ekaterina Shipilova
  • Function : Author
  • PersonId : 1039579
Jean-Luc Boelle
  • Function : Author
Jean-Luc Collette
  • Function : Author
  • PersonId : 1039580


Simultaneous shooting becomes attractive in seismic data acquisition, especially when a survey has to be acquired in harsh meteorological environment or under strict environmental regulations. Despite the evident time-saving advantage, the simultaneous-source method has a considerable draw-back: the sources interfere with each other creating cross-talk in the data, which leads to significant increase of the processing complexity. Whether a preliminary deblending step (i.e. separation of signals originating from different sources) is necessary or not, remains an open question. In any case, a lot of processing sequences for simultaneous-source data start with deblending. In this paper we propose such method based on identifying coherent features in the data and classifying them according to their source of origin. Following the principle of matrioshka dolls, nested Orthogonal Matching Pursuits (OMP) are used for signal decomposition. Our parametric dictionaries are adapted to seismic data and are progressively constructed during decomposition. The method shows encouraging results on synthetic 2D datasets and is scalable to large datasets of industrial size.
No file

Dates and versions

hal-01577905 , version 1 (28-08-2017)



Ekaterina Shipilova, Jean-Luc Boelle, Matthieu Bloch, Michel Barret, Jean-Luc Collette. Matrioshka orthogonal matching pursuit for blended seismic source separation. SEG annual meeting, Sep 2017, Houston, United States. , pp.4919-4924, 2017, ⟨10.1190/segam2017-17676431.1⟩. ⟨hal-01577905⟩
132 View
0 Download



Gmail Mastodon Facebook X LinkedIn More