Stone's theorem for distributional regression in Wasserstein distance - Laboratoire de Mathématiques de Besançon (UMR 6623)
Pré-Publication, Document De Travail Année : 2023

Stone's theorem for distributional regression in Wasserstein distance

Résumé

We extend the celebrated Stone's theorem to the framework of distributional regression. More precisely, we prove that weighted empirical distribution with local probability weights satisfying the conditions of Stone's theorem provide universally consistent estimates of the conditional distributions, where the error is measured by the Wasserstein distance of order p ≥ 1. Furthermore, for p = 1, we determine the minimax rates of convergence on specific classes of distributions. We finally provide some applications of these results, including the estimation of conditional tail expectation or probability weighted moment.
Fichier principal
Vignette du fichier
main.pdf (285.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03966752 , version 1 (31-01-2023)

Licence

Identifiants

Citer

Clément Dombry, Thibault Modeste, Romain Pic. Stone's theorem for distributional regression in Wasserstein distance. 2023. ⟨hal-03966752⟩
75 Consultations
92 Téléchargements

Altmetric

Partager

More