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Abstract

We extend the celebrated Stone’s theorem to the framework of dis-

tributional regression. More precisely, we prove that weighted empiri-

cal distribution with local probability weights satisfying the conditions

of Stone’s theorem provide universally consistent estimates of the con-

ditional distributions, where the error is measured by the Wasserstein

distance of order p ≥ 1. Furthermore, for p = 1, we determine the

minimax rates of convergence on specific classes of distributions. We

finally provide some applications of these results, including the estima-

tion of conditional tail expectation or probability weighted moment.
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1 Introduction

Forecast is a major task from statistics and often of crucial importance for
decision making. In the simple case when the quantity of interest is univari-
ate and quantitative, point forecast often takes the form of regression where
one aims at estimating the conditional mean (or the conditional quantile) of
the response variable Y given the available information encoded in a vector of
covariates X. A point forecast is only a rough summary statistic and should
at least be accompanied with an assessment of uncertainty (e.g. standard
deviation or confidence interval). Alternatively, probabilistic forecasting and
distributional regression (Gneiting and Katzfuss, 2014) suggest to estimate
the full conditional distribution of Y given X, called the predictive distribu-
tion.

In the last decades, weather forecast has been a major motivation for
the development of probabilistic forecast. Ensemble forecasts are based on
a given number of deterministic models whose parameters vary slightly in
order to take into account observation errors and incomplete physical repre-
sentation of the atmosphere. This leads to an ensemble of different forecasts
that overall also assess the uncertainty of the forecast. Ensemble forecasts
suffer from bias and underdispersion (Hamill and Colucci, 1997) and need to
be statistically postprocessed in order to be improved. Different postprocess-
ing methods have been proposed, such as Ensemble Model Output Statistics
(Gneiting et al., 2005), Quantile Regression Forests (Taillardat et al., 2019)
or Neural Networks (Schulz and Lerch, 2021) among others. Distributional
regression is now widely used beyond meteorology and recent methodological
works include deep distribution regression by Li et al. (2021), distributional
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random forest by Ćevid et al. (2022) or isotonic distributional regression by
Henzi et al. (2021).

The purpose of the present paper is to provide an extension to the frame-
work of distributional regression of the celebrated Stone’s theorem (Stone,
1977) that states the consistency of local weight algorithm for the estima-
tion of the regression function. The strength of Stone’s theorem is that
it is fully non-parametric and model-free, with very mild assumptions that
covers many important cases such as kernel algorithms and nearest neigh-
bor methods, see e.g. Györfi et al. (2002) for more details. We prove that
Stone’s theorem has a natural and elegant extension to distributional regres-
sion with error measured by the Wasserstein distance of order p ≥ 1. Our
result covers not only the case of a one-dimensional output Y ∈ R where the
Wasserstein distance has a simple explicit form, but also the case of a multi-
variate output Y ∈ R

d. The use of the Wasserstein distance is motivated by
recent works revealing that it is a useful and powerful tool in statistics, see
e.g. the review by Panaretos and Zemel (2020). Besides this main result,
we characterize, in the case d = 1 and p = 1, the optimal minimax rate of
convergence on suitable classes of distributions. We also discuss implications
of our results to estimate various statistics of possible interest such as the
expected shortfall or the probability weighted moment.

The structure of the paper is the following. In Section 2, we present
the required background on Stone’s theorem and Wasserstein spaces. Sec-
tion 3 gathers our main results, including the extension of Stone’s theorem to
distributional regression (Theorem 2), the characterization of optimal mini-
max rates of convergence (Theorem 3) and some applications (Proposition 2
and the subsequent examples). All the technical proofs are postponed to
Section 4.

2 Background

2.1 Stone’s theorem

In a regression framework, we observe a sample (Xi, Yi), 1 ≤ i ≤ n, of
independent copies of (X,Y ) ∈ R

k × R
d with distribution P . Based on this

sample and assuming Y integrable, the goal is to estimate the regression
function

r(x) = E[Y |X = x], x ∈ R
k.

Local average estimators take the form

r̂n(x) =

n
∑

i=1

Wni(x)Yi (1)

with Wn1(x), . . . ,Wnn(x) the local weights at x. The local weights are as-
sumed to be measurable functions of x and X1, . . . ,Xn but not to depend
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on Y1, . . . , Yn, that is

Wni(x) = Wni(x;X1, . . . ,Xn), 1 ≤ i ≤ n. (2)

For the convenience of notation, the dependency on X1, . . . ,Xn is implicit.
In this paper, we focus only on the case of probability weights satisfying

Wni(x) ≥ 0, 1 ≤ i ≤ n, and
n
∑

i=1

Wni(x) = 1. (3)

Stone’s Theorem states the universal consistency of the regression estimate
in Lp-norm.

Theorem 1 (Stone (1977)). Assume the probability weights (3) satisfy the
following three conditions:

i) there is C > 0 such that E [
∑n

i=1 Wni(X)g(Xi)] ≤ CE[g(X)] for all
n ≥ 1 and measurable g : Rk → [0,+∞) such that E[g(X)] < ∞;

ii) for all ε > 0,
∑n

i=1Wni(X)1{‖Xi−X‖>ε} → 0 in probability as n →
+∞;

iii) max1≤i≤n Wni(X) → 0 in probability as n → +∞.

Then, for all p ≥ 1 and (X,Y ) ∼ P such that E[‖Y ‖p] < ∞,

E [‖r̂n(X) − r(X)‖p] −→ 0 as n → +∞. (4)

Conversely, if Equation (4) holds, then the probability weights must satisfy
conditions i)− iii).

Remark 1. Stone’s theorem is usually stated in dimension d = 1. Since
the convergence of random vectors r̂n(X) → r(X) in Lp is equivalent to
convergence in Lp of all the components, the extension to the dimension
d ≥ 2 is straightforward. Furthermore, more general weights than probability
weights can be considered: condition (3) can be dropped and replaced by
the weaker assumptions that

|Wni(X)| ≤ M a.s. for some M > 0.

and
n
∑

i=1

Wni(X) → 1 in probability.

Such general weights will not be considered in the present paper and we there-
fore stick to probability weights. The reader can refer to Biau and Devroye
(2015) for a complete proof of Stone’s theorem together with a discussion.
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Example 1. The following two examples of kernel weights and nearest neigh-
bor weights are the most important ones in the literature and we refer to
Györfi et al. (2002) Chapter 5 and 6 respectively for more details.

• The kernel weights are defined by

Wni(x) =
K
(

x−Xi

hn

)

∑n
j=1K

(

x−Xj

hn

) , 1 ≤ i ≤ n (5)

if the denominator is nonzero, and 1/n otherwise. Here the band-
width hn > 0 depends only on the sample size n and the function
K : Rk → [0,+∞) is called a kernel. In this case, the estimator (1)
corresponds to the Nadaraya-Watson estimator of the regression func-
tion (Nadaraya, 1964; Watson, 1964). We say that K is a boxed kernel
if there are constants R2 ≥ R1 > 0 and M2 ≥ M1 > 0 such that

M11{‖x‖≤R1} ≤ K(x) ≤ M21{‖x‖≤R2}, x ∈ R
k.

Theorem 5.1 in Györfi et al. (2002) states that, for a boxed kernel, the
kernel weights (5) satisfy conditions i)− iii) of Theorem 1 if and only
if hn → 0 and nhkn → +∞ as n → +∞.

• The nearest neighbor (NN) weights are defined by

Wni(x) =

{

1
κn

if Xi belongs to the κn-NN of x

0 otherwise
, (6)

where the number of neighbors κn ∈ {1, . . . , n} depends only on the
sample size. Recall that the κn-NN of x within the sample (Xi)1≤i≤n

are obtained by sorting the distances ‖Xi − x‖ in increasing order
and keeping the κn points with the smallest distances – as discussed
in Györfi et al. (2002) Chapter 6, several rules can be used to break
ties such as lexicographic or random tie breaking. Theorem 6.1 in
the same reference states that the nearest neighbor weights (6) satisfy
conditions i)−iii) of Theorem 1 if and only if κn → +∞ and κn/n → 0
as n → +∞.

Example 2. Interestingly, some variants of the celebrated Breiman’s Ran-
dom Forest (Breiman, 2001) produce probability weights satisfying the as-
sumptions of Stone’s theorem. In Breiman’s Random Forest, the splits in-
volve both the covariates and the response variable so that the associated
weighs Wni(x) = Wni(x; (Xl, Yl)1≤l≤n) are not in the form (2). Scornet
(2016) considers two simplified version of infinite random forest where the
associated weights Wni(x) do not depend on the response values and sat-
isfy the so call X-property, that is they are in the form (2). For totally
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non adaptive forests, the trees are grown thanks to a binary splitting rule
that does not use the training sample and is totally random; the author
shows that the probability weights associated to the infinite forest satisfy
the assumptions of Stone’s theorem under the condition that the number of
leaves grows to infinity at a rate smaller than n and the leaf volume tends
to zero in probability (see Theorem 4.1 and its proof). For q-quantile forest,
the binary splitting rules involves only the covariates and the author shows
that the weights associated to the infinite forest satisfy the assumptions of
Stone’s theorem provided the subsampling number an satifies an → +∞ and
an/n → 0 (see Theorem 5.1 and its proof).

2.2 Wasserstein spaces

We recall the definition and some elementary facts on Wasserstein spaces on
R
d. More details and further results on optimal transport and Wasserstein

spaces can be found in the monograph by Villani (2009), Chapter 6.
For p ≥ 1, the Wasserstein space Wp(R

d) is defined as the set Borel
probability measures on R

d having a finite moment of order p, i.e. such that

Mp(µ) =
(

∫

Rd

‖y‖p µ(dy)
)1/p

< ∞. (7)

It is endowed with the distance defined, for Q1, Q2 ∈ Wp(R
d), by

Wp(Q1, Q2) = inf
π∈Π(Q1,Q2)

(
∫

‖y1 − y2‖p π(dy1dy2)
)1/p

, (8)

where Π(Q1, Q2) denotes the set of measures on R
d × R

d with margins Q1

and Q2. A couple (Z1, Z2) of random variables with distributions Q1 and
Q2 respectively is called a coupling. The Wasserstein distance is thus the
minimal distance ‖Z1−Z2‖Lp = E[‖Z1−Z2‖p]1/p over all possible couplings.
Existence of optimal couplings is ensured since Rd is a complete and separable
metric space so that the infimum is indeed a minimum.

Wasserstein distances are generally difficult to compute, but the case
d = 1 is the exception. A simple optimal coupling is provided by the proba-
bility inverse transform: for i = 1, 2, let Qi ∈ Wp(R), Fi denotes its cumula-
tive distribution function and F−1

i its generalized inverse (quantile function).
Then, starting from an uniform random variable U ∼ Unif(0, 1), an optimal
coupling is given by (Z1, Z2) = (F−1

1 (U), F−1
2 (U)). Therefore, the Wasser-

stein distance is explicitly given by

Wp(Q1, Q2) =

(
∫ 1

0
|F−1

1 (u)− F−1
2 (u)|pdu

)1/p

. (9)

When p = 1, a simple change of variable yields

W1(Q1, Q2) =

∫ +∞

−∞
|F1(u)− F2(u)|du. (10)
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3 Main results

3.1 Stone’s theorem for distributional regression

We now present the main result of the paper which is a natural extension of
Stone’s theorem to the framework of distributional regression. Given a distri-
bution (X,Y ) ∼ P on R

k ×R
d, we denote by F the marginal distribution of

Y and by Fx its conditional distribution given X = x. This conditional dis-
tribution can be estimated on a sample (Xi, Yi)1≤i≤n of independent copies
of (X,Y ) by the weighted empirical distribution

F̂n,x =

n
∑

i=1

Wni(x)δYi
(11)

where δy denotes the Dirac mass at point y ∈ R
d. For probability weights

satisfying (3), F̂n,x is a probability measure and can be viewed as a random
element in the complete and separable space Wp(R

d). We recall that the
weights Wni(x) = Wni(x;X1, . . . ,Xn) implicitly depend on X1, . . . ,Xn but
not on Y1, . . . , Yn.

Theorem 2. Assume the probability weights satisfy conditions i)− iii) from
Theorem 1. Then, for all p ≥ 1 and (X,Y ) such that E[‖Y ‖p] < ∞,

E
[

Wp
p (F̂n,X , FX)

]

−→ 0 as n → +∞. (12)

Conversely, if Equation (12) holds, then the probability weights must satisfy
conditions i)− iii).

It is worth noticing that

E [‖r̂n(X)− r(X)‖p] ≤ E
[

Wp
p (F̂n,X , FX)

]

so that Theorem 2 implies Theorem 1 in a straightforward way. The proof of
Theorem 2 is postponed to Section 4. It first considers the case d = 1 where
the Wasserstein distance is explicitly given by formula (9). Then, the results
is extended to higher dimension d ≥ 2 thanks to the notion of max-sliced
Wasserstein distance (Bayraktar and Guo, 2021) which allows to reduce the
convergence of measures on R

d to the convergence of their uni-dimensional
projections (a precise statement is given in Theorem 4 below).

3.2 Rates of convergence

We next consider rates of convergence in the minimax sense. Note that
similar questions and results have been established in Pic et al. (2022), where
the second order Cramér’s distance was considered, i.e.

‖F̂n,X − FX‖2L2
=

∫

R

|F̂n,X(y)− FX(y)|2 dy.
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We focus here on the Wasserstein distance Wp(F̂n,X , FX) and consider only
the case d = 1 and p = 1 which allows the explicit expression (10). The other
cases seem harder to analyze and are beyond the scope of the present paper.
Our first result considers the error in Wasserstein distance when X = x is
fixed.

Proposition 1. Assume d = 1 and (X,Y ) ∼ P such that E[|Y |] < ∞.
Then,

E
[

W1(F̂n,x, Fx)
]

≤ E

[

n
∑

i=1

Wni(x)W1(FXi
, Fx)

]

+M(x)E
[

n
∑

i=1

W 2
ni(x)

]1/2
,

where M(x) =
∫

R

√

Fx(z)(1 − Fx(z))dz.

The first term corresponds to an approximation error due to the fact
that we use a biased sample to estimate Fx. The more regular the model
is, the smaller the approximation error is. The second term is an estimation
error due to the fact that we use an empirical mean to estimate Fx. This
estimator error is smaller if the distribution error has a lower dispersion (as
measured by M(x)) or if

∑n
i=1W

2
ni(x) is small. Note that in the case of

nearest neighbor weights, 1/
∑n

i=1 W
2
ni(x) is exactly equal to κ so that this

quantity is often referred to as the effective sample size and the estimation
error is proportional to the square root of the expected reciprocal effective
sample size.

In view of Proposition 1, we introduce the following classes of functions.

Definition 1. Let D(H,L,M) be the class of distributions (X,Y ) ∼ P on
R
k × R satisfying:

a) X ∈ [0, 1]k a.s. and E|Y | < ∞,

b) for all x, x′ ∈ [0, 1]k, W1(Fx, Fx′) ≤ L‖x− x′‖H ,

c) for all x ∈ [0, 1]k,
∫

R

√

Fx(z)(1 − Fx(z)) dz ≤ M .

The definition of the class together with Proposition 1 entails that the
expected error is uniformly bounded on the class D(H,L,M) by

E

[

W1(F̂n,X , FX)
]

≤ LE
[

n
∑

i=1

Wni(X)‖Xi −X‖H
]

+ME

[

n
∑

i=1

W 2
ni(X)

]1/2
. (13)

As a consequence, Proposition 1 allows to derive explicit bounds uniformly
on D(H,L,M) for the kernel and nearest neighbor methods from Example 1.
For the sake of simplicity, we consider the uniform kernel only.
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Corollary 1. Let F̂n,X be given by the kernel method with uniform kernel
K(x) = 1{‖x‖≤1} and weights given by Equation (5). If P ∈ D(H,L,M),
then

E
[

W1(F̂n,X , FX)
]

≤ LhHn +M
√

(2 + 1/n)ck(nh
k
n)

−1/2 + LkH/2ck(nh
k
n)

−1

with ck = kk/2.

Corollary 2. Let F̂n,X be given by the nearest neighbor method with weights
given by Equation (6) and assume P ∈ D(H,L,M). Then,

E
[

W1(F̂n,X , FX)
]

≤
{

L8H/2(κn/n)
H/2 +Mκ

−1/2
n if k = 1,

Lc̃
H/2
k (κn/n)

H/k +Mκ
−1/2
n if k ≥ 2,

where c̃k depends only on the dimension k and is defined in Biau and Devroye
(2015, Theorem 2.4).

One can see that consistency holds — i.e. the expected error tends to 0
as n → +∞ — as soon as hn → 0 and nhkn → +∞ for the kernel method
and κn/n → 0 and κn → +∞ for the nearest neighbor method.

The next theorem provides the optimal minimax rate of convergence on
the class D(H,L,M). We say that two sequences of positive numbers (an)
and (bn) have the same rate of convergence, noted an ≍ bn, if the ratios
an/bn and bn/an remain bounded as n → +∞.

Theorem 3. The optimal minimax rate of convergence on the class D(H,L,M)
is given by

inf
F̂n

sup
P∈D(H,L,M)

E[W1(F̂n,X , FX)] ≍ n−H/(2H+k).

Theorem 3 is the counterpart of Pic et al. (2022, Theorem 1) where the
minimax rate of convergence for the second order Cramér’s distance has
been considered. The strategy of proof is similar: i) we prove a lower bound
by considering a suitable class of binary distributions where the error in
Wasserstein distance corresponds to an absolute error in point regression
for which the minimax lower rate of convergence is known; ii) we check
that the upper bound for the kernel and/or nearest neighbor algorithm has
the same rate of convergence as the lower bound, which proves that the
optimal minimax rate of convergence has been identified. In particular,
our proof shows that the kernel method defined in Equation (5) reaches
the minimax rate of convergence in any dimension k ≥ 1 with the choice
of bandwidth hn ≍ n−1/(2H+k); the nearest neighbor method defined in
Equation (6) reaches the minimax rate of convergence in any dimension
k ≥ 2 with the number of neighbors κn ≍ nH/(H+k/2).
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Remark 2. Our estimate of the minimax rate of convergence holds only for
d = p = 1 and we briefly discuss what can be expected in other cases.

When p = 1 and d ≥ 2, one may hope to use the strong equivalence
between the max-sliced Wasserstein distance and the Wasserstein distance
(Bayraktar and Guo, 2021, Theorem 2.3.ii). This requires to estimate the
expectation of a supremum over the sphere and this line of research is left
for further work.

When p > 1, even in dimension d = 1, it seems difficult to obtain bounds
for the Wasserstein distance of order p without very strong assumptions.
Bobkov and Ledoux (2019) consider the rate of convergence of the empiri-
cal distribution F̂n = 1

n

∑n
i=1 δYi

for an i.i.d. sample Y1, . . . , Yn with dis-
tribution F on R. A first consistency result (Theorem 2.14) states that
E[Wp

p (F̂n, F )] → 0 as soon as F has a finite moment of order p ≥ 1. Re-
garding rates of convergence, they show (Corollary 3.9) that for p = 1 the
standard rate of convergence holds, i.e. E[W1(F̂n, F )] = O(1/

√
n), if and

only if

J1(F ) =

∫

R

√

F (z)(1 − F (z))dz < ∞.

On the other hand, rate of convergences for higher order p > 1 require the
condition

Jp(F ) =

∫

R

[F (z)(1 − F (z))]p/2

f(z)p−1
dz < ∞,

where f is the density of the absolutely continuous component of F . They
show (Corollary 5.5) that the standard rate holds, i.e. E[Wp

p (F̂n, F )] =
O(n−p/2), if and only if Jp(F ) < ∞. However, this condition is very strong:
it does not hold for the Gaussian distribution or for distributions with dis-
connected support.

3.3 Applications

We briefly illustrate Theorem 2 with some applications and examples. In
statistics, we commonly face the following generic situation: we are interested
in a summary statistic S with real values, e.g. quantiles or tail expectation,
and we want to assess the effect of X on Y through S, that is we want to
assess SY |X=x. Assuming that S is well-defined for distributions on R

d with
a finite moment of order p ≥ 1, it can be seen as a map S : Wp(R

d) → R

and then SY |X=x = S(Fx) with Fx the conditional distribution of Y given
X = x. A natural plug-in estimate of SY |X=x is

Ŝn,x = S(F̂n,x) with F̂n,x defined by (11).

In this generic situation, our extension of Stone’s theorem directly implies
the following proposition. Recall that Mp(µ) is defined in Equation (7).
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Proposition 2. Assume E[‖Y ‖p] < ∞ and P(FX ∈ C) = 1 where C ⊂ Wp(R
d)

denotes the continuity set of the statistic S : Wp(R
d) → R. Then weak con-

sistency holds, i.e.

Ŝn,X −→ SY |X in probability as n → +∞.

If furthermore the statistic S admits a bound of the form

|S(µ)| ≤ aM q
p (µ) + b, with a, b ≥ 0 and 0 < q ≤ p, (14)

then consistency holds in Lp/q, i.e.

E
[

|Ŝn,X − SY |X |p/q
]

−→ 0 as n → +∞

Example 3. (quantile). For a distribution G on R, we define the associated
quantile function

G−1(α) = inf{z ∈ R : G(z) ≥ α}, 0 < α < 1.

It is well-known that the weak convergence Gn
d→ G implies the quantile

convergence G−1
n (α) → G−1(α) at each continuity point α of G−1. Equiva-

lently, considering P(R) endowed with the weak convergence topology, the
α-quantile statistic Sα(G) = G−1(α) is continuous at G as soon as G−1 is
continuous at α.

In view of this, we let C = {G ∈ P(R) : G−1 continuous on (0, 1)} and
assume that the conditional distribution satisfies P(FX ∈ C) = 1. Then weak
convergence holds for the conditional quantiles, i.e.

F̂−1
n,X(α) → F−1

X (α) in probability.

Note that no integrability condition is needed here because we can apply
Proposition 2 on the transformed data (Xi, Ỹi)1≤i≤n, where Ỹi = tan−1(Yi)
is bounded so that convergence in Wasserstein distance is equivalent to weak
convergence. If furthermore Y is p-integrable, then the bound

|Sα(G)|p ≤ 1

α

∫ α

0
|G−1(u)|pdu+

1

1− α

∫ 1

α
|G−1(u)|pdu

≤
( 1

α
+

1

1− α

)

Mp
p (G)

implies the strengthened convergence

F̂−1
n,X(α) → F−1

X (α) in Lp.

Example 4. (tail expectation) The tail expectation above level α ∈ (0, 1)
is the risk measure defined for G ∈ W1(R) by

Sα(G) =
1

1− α

∫ 1

α
G−1(u) du.
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The name comes from the equivalent definition

Sα(G) = E[Y | Y > G−1(α)], Y ∼ G,

which holds when G−1 is continuous at α. One can see that

|Sα(G1)− Sα(G2)| ≤
1

1− α

∫ 1

α
|G−1

1 (u)−G−1
1 (u)|du

≤ 1

1− α

∫ 1

0
|G−1

1 (u)−G−1
2 (u)|du

=
1

1− α
W1(G1, G2).

so that Sα is Lipschitz continuous with respect to the Wasserstein distance
W1. As a consequence, the conditional tail expectation Sα(Fx) can be esti-
mated in a consistent way by the plug-in estimator Sα(F̂n,x) since

E[|Sα(F̂n,X)− Sα(FX)|] ≤ 1

1− α
E[W1(F̂n,X , FX)] −→ 0.

Example 5. (probability weighted moment) A similar result holds for the
probability weighted moment of order p, q > 0 defined by

Sp,q(G) =

∫ 1

0
G−1(u)up(1− u)q du, G ∈ W1(R).

(Greenwood et al. (1979)). The name comes from the equivalent definition

S(G) = E[Y G(Y )p(1−G(Y ))q], Y ∼ G,

which holds when G−1 is continuous on (0, 1). One can again check that the
statistic Sp,q is Lipschitz continuous with respect to the Wasserstein distance
W1 since

|Sp,q(G1)− Sp,q(G2)| ≤
∫ 1

0
|G−1

1 (u)−G−1
2 (u)|up(1− u)q du

≤ max
0≤u≤1

up(1− u)q ×
∫ 1

0
|G−1

1 (u)−G−1
2 (u)|du

=
( p

p+ q

)p( q

p+ q

)q
W1(G1, G2).

Example 6. (covariance) We conclude with a simple example in dimen-
sion d = 2 where the statistic of interest is the covariance between the two
components of Y = (Y1, Y2) given X = x. Here, we consider

S(G) =

∫

R2

y1y2 dG−
∫

R2

y1 dG

∫

R2

y2 dG, G ∈ W2(R
2).
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Considering square integrable random vectors Y = (Y1, Y2) and Z = (Z1, Z2)
with distribution G and H respectively, we compute

|S(G)− S(H)|
=

∣

∣Cov(Y1, Y2)− Cov(Z1, Z2)
∣

∣

=
∣

∣Cov(Y1, Y2 − Z2)− Cov(Z1 − Y1, Z2)
∣

∣

≤ Var(Y1)
1/2Var(Y2 − Z2)

1/2 +Var(Z2)
1/2Var(Z1 − Y1)

1/2

were the last line is a consequence of Cauchy-Schwartz inequality. We have
the upper bounds

Var(Y1)
1/2 ≤ M2(G), Var(Z2)

1/2 ≤ M2(H)

and, choosing an optimal coupling (Y,Z) between G and H,

Var(Z1 − Y1)
1/2 ≤ ‖Y − Z‖L2 = W2(G,H), Var(Y2 − Z2)

1/2 ≤ W2(G,H).

Altogether, we obtain,

|S(G) − S(H)| ≤
(

M2(G) +M2(H)
)

W2(G,H).

This proves that S is locally Lipschitz and hence continuous with respect to
the distance W2. Taking H = δ0, we obtain

|S(G)| ≤ M2(G)2

and the bound (14) holds with q = 2. Thus Proposition 2 implies that the
plug-in estimator

S(F̂n,x) =
n
∑

i=1

Wni(x)Y1iY2i −
n
∑

i=1

Wni(x)Y1i

n
∑

i=1

Wni(x)Y2i

is consistent in absolute mean for the conditional covariance

S(Fx) = E(Y1Y2 | X = x)− E(Y1 | X = x)E(Y2 | X = x),

i.e. E[|S(F̂n,X)− S(FX)|] −→ 0 as n → +∞.

4 Proofs

4.1 Proof of Theorem 2

Proof of Theorem 2 - case d = 1. We first consider the case when Y is uni-
formly bounded and takes its values in [−M,M ] for some M > 0. Then, it
holds

Fx(z) =

{

0 if z < −M

1 if z ≥ M
and F̂n,x(z) =

{

0 if z < −M

1 if z ≥ M
.

13



and the generalized inverse functions (quantile functions) are bounded in
absolute value by M . As a consequence,

E

[

Wp
p (F̂n,X , FX)

]

= E

[
∫ 1

0
|F̂−1

n,X(u)− F−1
X (u)|pdz

]

≤ (2M)p−1
E

[
∫ 1

0
|F̂−1

n,X(u)− F−1
X (u)|du

]

= (2M)p−1

∫ M

−M
E

[

|F̂n,X(z)− FX(z)|
]

dz. (15)

In this lines, we have used Equations (9) and (10) together with Fubini’s
theorem.

Consider the regression model (X,1{Y ≤z}) ∈ R
d×R where z ∈ [−M,M ]

is fixed. The corresponding regression function is

x 7→ E[1{Y≤z}|X = x] = Fx(z)

and the local weight estimator associated with the sample (Xi,1{Yi≤z}),
1 ≤ i ≤ n is

x 7→
n
∑

i=1

Wni(x)1{Yi≤z} = F̂n,x(z).

An application of Stone’s theorem with p = 1 yields

E

[

|F̂n,X(z)− FX(z)|
]

−→ 0, as n → +∞,

whence we deduce, by the dominated convergence theorem,
∫ M

−M
E

[

|F̂n,X(z)− FX(z)|
]

dz −→ 0.

The upper bound (15) finally implies

E

[

Wp
p (F̂n,X , FX)

]

−→ 0.

We next consider the general case when Y is not necessarily bounded.
For M > 0, we define the truncation Y M of Y by

Y M =











−M if Y < −M

Y if −M ≤ Y < M

M if Y ≥ M

.

We define similarly Y M
1 , . . . , Y M

n the truncations of Y1, . . . , Yn respectively.
The conditional distribution associated with Y M is

FM
x (z) = P(Y M ≤ z|X = x) =











0 if z < −M

Fx(z) if −M ≤ Y < M

1 if z ≥ M

.

14



The local weight estimation built on the truncated sample is

F̂M
n,x(z) =

n
∑

i=1

Wni(x)1{Y M
i ≤z}.

By the triangle inequality,

Wp(F̂n,x, Fx) ≤ Wp(F̂n,x, F̂
M
n,x) +Wp(F̂

M
n,x, F

M
x ) +Wp(F

M
x , Fx),

whence we deduce

E[Wp
p (F̂n,x, Fx)]

≤ 3p−1
(

E[Wp
p (F̂n,X , F̂M

n,X)] + E[Wp(F̂
M
n,X , FM

X )] + E[Wp
p (F

M
X , FX)]

)

.

By the preceding result in the bounded case, for any fixed M , the second
term converge to 0 as n → +∞. We next focus on the first and third term.

For fixed X = x, there is a natural coupling between the distribution
F̂n,x and F̂M

n,x given by (Z1, Z2) such that

(Z1, Z2) = (Yi, Y
M
i ) with probability Wni(x).

Clearly Z1 ∼ F̂n,x and Z2 ∼ F̂M
n,x and this coupling provides the upper bound

Wp
p (F̂n,x, F̂

M
n,x) ≤ ‖Z1 − Z2‖pLp =

n
∑

i=1

Wni(x)|Yi − Y M
i |p. (16)

Let us introduce the function gM (x) defined by

gM (x) = E
[

|Y − Y M |p | X = x
]

.

Using the fact that, conditionally on X1, . . . ,Xn, the random variables Y1, . . . , Yn

are independent with distribution FX1
, . . . , FXn , we deduce

E

[

Wp
p (F̂n,x, F̂

M
n,x)

]

≤ E

[

n
∑

i=1

Wni(x)gM (Xi)

]

.

The condition i) on the weights in Stone’s Theorem then implies

E

[

n
∑

i=1

Wni(X)gM (Xi)

]

≤ CE[gM(X)].

Because |Y −Y M |p converges almost surely to 0 as M → +∞ and is bounded
by 2p|Y |p which is integrable, Lebesgue’s convergence theorem implies

E[gM (X)] = E
[

|Y − Y M |p
]

−→ 0 as M → +∞.
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We deduce that the first term satisfies

E

[

Wp
p (F̂n,X , F̂M

n,X)
]

≤ CE[gM (X)] −→ 0, as M → +∞

where the convergence is uniform in n.
We now consider the third term. Since Y M is obtained from Y by trun-

cation, the distribution functions and quantile functions of Y and Y M are
related by

FM
x (z) =











0 if z < −M

Fx(z) if −M ≤ z < M

1 if z ≥ M

and

(FM
x )−1(u) =











−M if F−1
x (u) < −M

(Fx)
−1(u) if −M ≤ F−1

x (u) < M

M if F−1
x (u) ≥ M

.

As a consequence

Wp
p (F

M
x , Fx) =

∫ 1

0
|(FM

x )−1(u)− F−1
x (u)|pdu

= E
[

|Y M − Y |p | X = x
]

= gM (x).

We deduce

E
[

Wp
p (F

M
X , FX)

]

= E[gM (X)] −→ 0, as M → +∞

where the convergence is uniform in n.
We finally combine the three terms. The sum can be made smaller than

any ε > 0 by first choosing M large enough so that the first and third
terms are smaller than ε/3 and then choosing n large enough so that the
second term is smaller than ε/3. This proves Equation (12) and concludes
the proof.

In order to extend the proof from d = 1 to d ≥ 2, we need the notion of
sliced Wasserstein distance, see Bayraktar and Guo (2021) for instance. Let
S
d−1 = {u ∈ R

d : ‖u‖ = 1} be the unit sphere in R
d and, for u ∈ R

d, let
u∗ : Rd → R be the linear form defined by u∗(x) = u · x. The projection in
direction u of a measure µ on R

d is defined as the pushforward µ◦u−1
∗ which

is a measure on R. The inequality |u ·x| ≤ ‖x‖ implies that µ◦u−1
∗ ∈ Wp(R)

for all µ ∈ Wp(R
d) and u ∈ S

d−1. The sliced and max-sliced Wasserstein
distances between µ, ν ∈ Wp(R

d) are then defined respectively by

SWp(µ, ν) =

(
∫

Sd−1

Wp
p (µ ◦ u−1

∗ , ν ◦ u−1
∗ )σ(du)

)1/p

,
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where σ denotes the uniform measure on S
d−1 and

SW p(µ, ν) = max
u∈Sd−1

Wp(µ ◦ u−1
∗ , ν ◦ u−1

∗ ).

In plain words, the sliced and max-sliced Wasserstein distance are respec-
tively the average and the maximum over all the 1-dimensional Wasserstein
distances between the projections of µ and ν. The following result is crucial
in our proof.

Theorem 4 (Bayraktar and Guo (2021)). For all p ≥ 1, SWp and SW p

are distances on Wp(R
d) which are equivalent to Wp, i.e. for all sequence

µ, µ1, µ2, . . . ∈ Wp(R
d)

SWp(µn, µ) → 0 ⇐⇒ SW p(µn, µ) → 0 ⇐⇒ Wp(µn, µ) → 0.

Proof of Theorem 2 - case d ≥ 2. For the sake of clarity, we divide the proof
into three steps:

1) we prove that the result holds in max-sliced Wasserstein distance, i.e.
E[SW

p
p(F̂n,X , FX)] → 0;

2) we deduce that Wp(F̂n,X , FX) → 0 in probability;

3) we show that the sequence Wp
p (F̂n,X , FX) is uniformly integrable.

Points 2) and 3) together imply E[Wp
p (F̂n,X , FX)] → 0 as required.

Step 1). For all u ∈ S
d−1, the projection F̂n,X ◦ u−1

∗ is the weighted
empirical distribution

F̂n,X ◦ u−1
∗ =

n
∑

i=1

Wni(X)δYi·u.

An application of Theorem 2 to the 1-dimensional sample (Yi · u)i≥1 yields

E[Wp
p(F̂n,X ◦ u−1

∗ , FX ◦ u−1
∗ )] −→ 0. (17)

Note indeed that E[|Y |p] < ∞ implies E[|Y · u|p] < ∞ and that the condi-
tional laws of Y · u are the pushforward of those of Y , i.e. L(Y · u | X) =
FX ◦ u−1

∗ .
We next consider the max-sliced Wasserstein distance. Regularity in

the direction u ∈ S
d−1 will be useful and we recall that the Wasserstein

distance between projections depends on the direction in a Lipschitz way.
More precisely, according to Bayraktar and Guo (2021, Proposition 2.2),

|Wp(µ ◦ u−1
∗ , ν ◦ u−1

∗ )−Wp(µ ◦ v−1
∗ , ν ◦ v−1

∗ )| ≤ (Mp(µ) +Mp(ν))‖u− v‖,
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for all µ, ν ∈ Wp(R
d) and u, v ∈ S

d−1 (recall Equation (7) for the definition
of Mp(µ), Mp(ν)).

The sphere S
d−1 being compact, for all ε > 0, one can find K ≥ 1 and

u1, . . . , uK ∈ S
d−1 such that the balls B(ui, ε) with centers ui and radius

ε cover the sphere. Then, due to the Lipschitz property, the max-sliced
Wasserstein distance is controlled by

SW p(F̂n,X , FX)

= max
u∈Sd−1

Wp
p (F̂n,X ◦ u−1

∗ , FX ◦ u−1)

≤ max
1≤k≤K

Wp(F̂n,X ◦ u−1
k∗ , FX ◦ u−1

k∗ ) + ε(Mp(F̂n,X) +Mp(FX)).

Elevating to the p-th power and taking the expectation, we deduce

E
[

SW
p
p(F̂n,X , FX)

]

≤ 3p−1
E
[

max
1≤k≤K

Wp
p (F̂n,X ◦ u−1

k∗ , FX ◦ u−1
k∗ )

]

+ 3p−1εp(E
[

Mp
p (F̂n,X)

]

+ E
[

Mp
p (FX)

]

).

The first term converges to 0 thanks to Eq. (17), i.e.

E[ max
1≤i≤K

Wp
p (F̂n,X ◦ u−1

i∗ , FX ◦ u−1
i∗ )] −→ 0.

The second term is controlled by a constant times εp since

E[Mp
p (F̂n,X)] = E

[

n
∑

i=1

Wni(X)‖Yi‖p
]

≤ CE[‖Y ‖p]

(by property i) of the weights) and

E[Mp
p (FX)] = E

[

E[‖Y ‖p | X]
]

= E[‖Y ‖p]

(by the tower property of conditional expectation). Letting ε → 0, the second
term can be made arbitrarily small. We deduce E[SW

p
p(F̂n,X , FX )] → 0.

Step 2). As a consequence of step 1), SW p(F̂n,X , FX) → 0 in probability,
or equivalently F̂n,X → FX in probability in the metric space (Wp(R

d), SW p).
Theorem 4 implies that the identity mapping is continuous from (Wp(R

d), SW p)
into (Wp(R

d),Wp). The continuous mapping theorem implies that F̂n,X →
FX in probability in the metric space (Wp(R

d),Wp). Equivalently, Wp(F̂n,X , FX) →
0 in probability.

Step 3). By the triangle inequality,

Wp(F̂n,X , FX ) ≤ Wp(F̂n,X , δ0) +Wp(δ0, FX)

with δ0 the Dirac mass at 0. Furthermore, for any µ ∈ Wp(R
d),

Wp(µ, δ0) =

(
∫

Rd

‖x‖p µ(dx)
)1/p

= Mp(µ).
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We deduce

Wp
p (F̂n,X , FX) ≤ 2p−1Mp

p (F̂n,X) + 2p−1Mp
p (FX).

In order to prove the uniform integrability of the left hand side, it is enough
to prove that

Mp
p (FX) is integrable and Mp

p (F̂n,X), n ≥ 1, is uniformly integrable. (18)

We have
Mp

p (FX) = E[‖Y ‖p | X]

which is integrable because E[‖Y ‖p] < ∞. Furthermore,

Mp
p (F̂n,X) =

n
∑

i=1

Wni(X)‖Yi‖p

and Stone’s Theorem ensures that

n
∑

i=1

Wni(X)‖Yi‖p −→ E[‖Y ‖p | X] in L1.

Since the sequence Mp
p (F̂n,X) converges in L1, it is uniformly integrable and

the claim follows.

4.2 Proof of Proposition 1, Corollaries 1-2 and Theorem 3

Proof of Proposition 1. The proof of the upper bound relies on a coupling
argument. Without loss of generality, we can assume that the Yi’s are gener-
ated from uniform random variables Ui’s by the inversion method – i.e. we
assume that Ui, 1 ≤ i ≤ n, are independent identically distributed random
variables with uniform distribution on (0, 1) that are furthermore indepen-
dent from the covariates Xi, 1 ≤ i ≤ n and we set Yi = F−1

Xi
(Ui). Then the

sample (Xi, Yi) is i.i.d. with distribution P . In order to compare F̂n,x and
Fx, we introduce the random variables Ỹi = F−1

x (Ui) and we define

F̃n,x(z) =

n
∑

i=1

Wni(x)1{Ỹi≤z}.

By the triangle inequality,

W1(F̂n,x, Fx) ≤ W1(F̂n,x, F̃n,x) +W1(F̃n,x, Fx).

In the right hand side, the first term is interpreted as an approximation
error comparing the weighted sample (Yi,Wni(x)) to (Ỹi,Wni(x)) where the
Ỹi have the target distribution Fx. The second term is an estimation error
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where we use the weighted sample (Ỹi,Wni(x)) with the correct distribution
to estimate Fx.

We first consider the approximation error. A similar argument as for the
proof of Equation (16) implies

W1(F̂n,x, F̃n,x) ≤
n
∑

i=1

Wni(x)|Yi − Ỹi|.

Introducing the uniform random variables Ui’s, we get

E[W1(F̂n,x, F̃n,x)] ≤ E

[

n
∑

i=1

Wni(x)|F−1
Xi

(Ui)− F−1
x (Ui)|

]

= E

[

n
∑

i=1

Wni(x)

∫ 1

0
|F−1

Xi
(u)− F−1

x (u)| du
]

by independence

= E

[

n
∑

i=1

Wni(x)W1(FXi
, Fx)

]

,

where the equality relies on Equation (9). Note that this control of the
approximation error is very general and could be extended to the Wasserstein
distance of order p > 1.

We next consider the estimation error and our approach works for p = 1
only. By Equation (10),

E[W1(F̃n,x, Fx)] = E

[

∫

R

∣

∣

∣

n
∑

i=1

Wni(x)
(

1{Ỹi≤z} − Fx(z)
)

∣

∣

∣
dz

]

.

Applying Fubini’s theorem and using the upper bound

E

[
∣

∣

∣

n
∑

i=1

Wni(x)
(

1{Ỹi≤z} − Fx(z)
)

∣

∣

∣

]

≤ E

[
∣

∣

∣

n
∑

i=1

Wni(x)
(

1{Ỹi≤z} − Fx(z)
)

∣

∣

∣

2]1/2

= E

[

n
∑

i=1

W 2
ni(x)

]1/2√
Fx(z)(1 − Fx(z)),

we deduce

E[W1(F̃n,x, Fx)] ≤ E

[

n
∑

i=1

W 2
ni(x)

]1/2
∫

R

√

Fx(z)(1 − Fx(z))dz.

Collecting the two terms yields Proposition 1.
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Proof of Corollary 1. For the kernel algorithm with uniform kernel and weights (5),
we denote by

Nn(X) =
n
∑

i=1

1{Xi∈B(X,hn)}

the number of points in the ball B(X,hn) with center X and radius hn. If
Nn ≥ 1, only the points in B(X,hn) have a nonzero weight which is equal to
1/Nn. If Nn = 0, then by convention all the weights are equal to 1/n. Thus
we deduce

E

[

n
∑

i=1

W 2
ni(X)

]

= E

[ 1

Nn(X)
1{Nn(X)≥1}

]

+
1

n
P(Nn(X) = 0)

and

E

[

n
∑

i=1

Wni(X)‖Xi −X‖H
]

≤ hHn P(Nn(X) ≥ 1) + kH/2
P(Nn(X) = 0)

because the distance to X for the points with non zero weight can be bounded
from above by hn if Nn(X) ≥ 1 and by

√
k otherwise (note that

√
k is the

diameter of [0, 1]k).
Next, we use the fact that, conditionally on X = x, Nn(x) has a binomial

distribution with parameters n and pn(x) = P(X1 ∈ B(x, hn)). This implies

E

[ 1

Nn(X)
1{Nn(X)≥1}

]

≤ E

[ 2

npn(X)

]

≤ 2ck
nhkn

where the first inequality follows from Györfi et al. (2002, Lemma 4.1) and
the second one from Györfi et al. (2002, Equation 5.1) where the constant
ck = kk/2 can be taken. Similarly,

P(Nn(X) = 0) = E[(1− pn(X))n] ≤ E[e−npn(X)]

≤
(

max
u>0

ue−u
)

× E

[ 1

npn(X)

]

≤ ck
nhkn

.

In view of these different estimates, Equation (13) entails

E
[

W1(F̂n,X , FX)
]

≤ L
(

hHn + kH/2 ck
nhkn

)

+M

(

(2 + 1/n)ck
nhkn

)1/2

≤ LhHn +M
√

(2 + 1/n)ck(nh
k
n)

−1/2 + LkH/2ck(nh
k
n)

−1.
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Proof of Corollary 2. For the nearest neighbor weights (6), there are exactly
κn non-vanishing weights with value 1/κn whence

n
∑

i=1

W 2
ni(X) =

1

κn
.

Furthermore, the κn nearest neighbors of X satisfy

‖Xi:n(X) −X‖ ≤ ‖Xκn:n(X)−X‖, i = 1, . . . , κn.

In view of this, Equation (13) entails

E
[

W1(F̂n,X , FX )
]

≤ LE
[

‖Xκn:n(X)−X‖H
]

+Mκ−1/2
n

≤ LE
[

‖Xκn:n(X)−X‖2
]H/2

+Mκ−1/2
n

where the last line relies on Jensen’s inequality. We conclude thanks to
Biau and Devroye (2015, Theorem 2.4) stating that

E
[

‖Xκn:n(X)−X‖2
]

≤
{

8(κn/n) if k = 1,

c̃k(κn/n)
2/k if k ≥ 2.

Proof of Theorem 3 (lower bound). The proof of a lower bound for the min-
imax risk in Wasserstein distance is adapted from the proof of Proposition 3
in Pic et al. (2022, Appendix C) and we give only the main lines.

Consider the subclass of D(H,L,M) where Y is a binary variable with
possible values 0 and B. Note that condition c) of Definition 1 is automati-
cally satisfied if B ≤ 4M . The conditional distribution of Y given X = x is
characterized by

p(x) = P(Y = B | X = x)

and the Wasserstein distance by

W1(Fx, Fx′) = B|p(x)− p(x′)|,

so that property b) of Definition 1 is equivalent to

B|p(x)− p(x′)| ≤ L‖x− x′‖H . (19)

Similarly as in Pic et al. (2022, Lemma 1), one can show that a general
prediction with values in R can always be improved (in terms of Wasserstein
error) into a binary prediction with values in {0, B}. Indeed, for a given
prediction F̂n,x, the binary prediction

F̃n,x = (1− p̃n(x))δ0 + p̃n(x)δB
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with

p̃n(x) =
1

B

∫ B

0

(

1− F̂n,x(z)
)

dz

always satisfies

E[W1(F̃n,X , FX)] ≤ E[W1(F̂n,X , FX)].

This simple remark implies that, when considering the minimax risk on the
restriction of the class D(H,L,M) to binary distributions, we can focus on
binary predictions. But for binary predictions,

E[W1(F̃n,X , FX)] = B|p̃n(X)− p(X)|,

showing that the minimax rate of convergence for distributional regression
in Wasserstein distance is equal to the minimax rate of convergence for esti-
mating the regression function E[Y |X = x] = Bp(x) in absolute error under
the regularity assumption (19) . According to Stone (1980, 1982), a lower
bound for the minimax risk in L1-norm is n−H/(2H+k) (in the first paper,
we consider the Bernoulli regression model referred to as Model 1 Example
5 and the Lq distance with q = 1).

Proof of Theorem 3 (upper bound). For the kernel method, Corollary 1 states
that the expected Wasserstein error is upper bounded by

LhHn +M
√

(2 + 1/n)ck(nh
k
n)

−1/2 + LkH/2ck(nh
k
n)

−1.

Minimizing the sum of the first two terms in the right-hand side with respect
to hn leads to hn ∝ n1/(2H+1) and implies that right-hand side is of order
n−H/(2H+k) (the last term is negligible). This matches the minimax lower
rate of convergence previously stated previously and proves that the optimal
minimax risk is of order n−H/(2H+k).

For the nearest neighbor method, minimizing the upper bound for the
expected Wasserstein error from Corollary 2 leads to

κn ∝
{

nH/(H+1) if k = 1

nH/(H+k/2) if k ≥ 2
,

with a corresponding risk of order
{

n−H/(2H+2) if k = 1

n−H/(2H+k) if k ≥ 2
,

whence the nearest neighbor method reaches the optimal rate when k ≥
2.
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4.3 Proof of Proposition 2

Proof of Proposition 2. The first point follows from the fact that composi-
tion by a continuous application respects convergence in probability. Indeed,
as the estimator F̂n,X converges to FX in probability for the Wasserstein dis-
tance Wp, S(F̂n,X) converges to S(FX) in probability.

In order to prove the consistency in Lp/q, it is enough to prove further-
more the uniform integrability of |S(F̂n,X) − S(FX)|p/q, n ≥ 1. With the
convexity inequality of power functions as p/q ≥ 1, Equation (14) entails

|S(F̂n,X)− S(FX)|p/q ≤ 2p/q−1
(

|S(F̂n,X)|p/q + |S(FX)|p/q
)

≤ 2p/q−1
(

(aM q
p (F̂n,X) + b)p/q + (aM q

p (FX ) + b)p/q
)

≤ 22(p/q−1)
(

ap/qMp
p (F̂n,X) + ap/qMp

p (FX) + 2bp/q
)

.

This upper bound together with Equation (18) implies the uniform integra-
bility of |S(F̂n,X)− S(FX)|p/q, n ≥ 1, which concludes the proof.
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Journal of Statistics, Series A (1961-2002), 26(4):359–372, 1964. ISSN
0581572X. URL http://www.jstor.org/stable/25049340.

Domagoj Ćevid, Loris Michel, Jeffrey Näf, Nicolai Meinshausen,
and Peter Bühlmann. Distributional random forests: Heterogene-
ity adjustment and multivariate distributional regression. Jour-
nal of Machine Learning Research, 23(333):1–79, 2022. URL
http://jmlr.org/papers/v23/21-0585.html.

26

https://doi.org/10.1016/j.jmva.2015.06.009
http://links.jstor.org/sici?sici=0090-5364(197707)5:4<595:CNR>2.0.CO;2-O&origin=MSN
http://links.jstor.org/sici?sici=0090-5364(198011)8:6<1348:OROCFN>2.0.CO;2-Q&origin=MSN
http://links.jstor.org/sici?sici=0090-5364(198212)10:4<1040:OGROCF>2.0.CO;2-2&origin=MSN
https://doi.org/10.1007/978-3-540-71050-9
http://www.jstor.org/stable/25049340
http://jmlr.org/papers/v23/21-0585.html

	Introduction
	Background
	Stone's theorem
	Wasserstein spaces

	Main results
	Stone's theorem for distributional regression
	Rates of convergence
	Applications

	Proofs
	Proof of Theorem 2
	Proof of Proposition 1, Corollaries 1-2 and Theorem 3
	Proof of Proposition 2


