Deformations Preserving Gauß Curvature - Archive ouverte HAL Access content directly
Book Sections Year : 2014

Deformations Preserving Gauß Curvature

(1) , (1) , (2)
1
2

Abstract

In industrial surface generation, it is important to consider surfaces with minimal areas for two main reasons: these surfaces require less material than non-minimal surfaces, and they are cheaper to manufacture. Based on a prototype, a so-called masterpiece, the final product is created using small deformations to adapt a surface to the desired shape. We present a linear deformation technique preserving the total curvature of the masterpiece. In particular, we derive sufficient conditions for these linear deformations to be total curvature preserving when applied to the masterpiece. It is useful to preserve total curvature of a surface in order to minimise the amount of material needed, and to minimise bending energy.
Fichier principal
Vignette du fichier
BHH-topo14.pdf (1.12 Mo) Télécharger le fichier
Vignette du fichier
BHH14.png (79.26 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Format : Figure, Image
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01070861 , version 1 (05-01-2015)

Identifiers

Cite

Anne Berres, Hans Hagen, Stefanie Hahmann. Deformations Preserving Gauß Curvature. Bennett, Janine; Vivodtzev, Fabien; Pascucci, Valerio. Topological and statistical methods for complex data -- Tackling large-scale, high-dimensional, and multivariate data sets, Springer, pp.143-163, 2014, Mathematics and Visualization, 978-3-662-44899-1. ⟨10.1007/978-3-662-44900-4_9⟩. ⟨hal-01070861⟩
383 View
505 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More