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Deformations Preserving Gauld Curvature

Anne Berres, Hans Hagen, and Stefanie Hahmann

1 Introduction

In industrial surface generation, it is important to consider surfaces with minimal
areas for two main reasons: these surfaces require less material than non-minimal
surfaces, and they are cheaper to manufacture. Based on a prototype, a so-called
masterpiece, the nal product is created using small deformations to adapt a surface
to the desired shape. We present a linear deformation technique preserving the total
curvature of the masterpiece. In particular, we derive suf cient conditions for these
linear deformations to be total curvature preserving when applied to the masterpiece.
It is useful to preserve total curvature of a surface in order to minimise the amount
of material needed, and to minimise bending energy [15, 9].

E mov was the rst to introduce partial differential equations as a tool to study
in nitesimal bending. He gives an overview of the state of the art of in nitesimal
bendings in his textbook [6]. Hagen et al. [10] visualise the momentarial rotation
eld that is associated with in nitesimal bending. They then use the structure of
this rotation eld as a tool to analyse the deformations that were generated by this
bending. Hahmann et al. [11] investigate numerical aspects of discretising the de-
formation vector eld. Ivanova and Subitov [13] examine in nitesimal bendings of
surfaces of revolution and of polyhedra. Meziani [18] studies in nitesimal bending
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of homogeneous surfaces that have a at point and positive curvature. More recent
works on in nitesimal bending for curves and non-parametric surfaces have been
published by L. Velimirovt et al. They study total mean curvature variation on ori-
ented, boundary-free surfaces [22], and they visualise changes of bent curves as
surfaces constructed from different stages of deformation [21]. Eigensatz et al. [8]
use curvature as a tool to control surface deformation. They extend this work to al-
low various user-speci ed local restrictions on deformation [7]. Other works have
addressed perturbations preserving the topological form of polyhedra [1], and de-
formations preserving ambient isotopy of curves [14, 16].

In this work, rather than studying total curvature changes after bending, or using
curvature as a tool to deform surfaces, we employ total curvature as a tool to restrict
bending and avoid large changes. We assume a rigid material that can be bent out of
shape through exterior deformations but that cannot be stretched in tangent direction
through interior deformations, as common in engineering [2, 4].

Section 2 gives an introduction into some fundamentals of differential geometry
that our method is based on. In Section 3, we describe and prove our approach,
rounded off by two examples in Section 4.

2 Fundamentals of Differential Geometry

We start by de ning parametrised surfaces, tangents, derivatives, and Gaul frames.
Then, we recall the de nitions of the rst and second fundamental forms, and nally,
we discuss various well-established de nitions of curvature. For more de nitions,
see [5].

A parametrised Csurfaceis aC' -differentiable mapping :U ! E2 of an open
domainU  E? into the Euclidean spadg®, whose differential ¥ is one-to-one
for eachq2 U.

Remark 1.

(a) A change of variables of is a diffeomorphism :U ! U, wheret is an open
domain inE2, such that's differential & always has rank 2, if the determi-
nant of its Jacobian matrix det ) > 0 is orientation-preserving.

(b) Relationship: the change of variables de nes an equivalence relation on the class
of all parametrised surfaces. An equivalence class of parametrised surfaces is
called a surface i3.

() Let us denote in the followiny, := 15X := F: Xy = ﬂ'”uz.”ﬁv or alternatively
Xi;Xj;i; j 2 f uwg. The differential & is one-to-one if and only i and 1
are linearly independent.

We can de ne a tangent plane which is spanned by the tangents of the surface.
This tangent plane, in conjunction with the surface normal, de nes a local coordi-
nate system on the manifold.

De nition 1.
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(a) The tangent plane is a two-dimensional linear subspaéef E3 generated by
spar Xy; Xwg, and it is called theéangent space of X at=(u;w) 2 U.
(b) Elements off X are calledangent vectors

(c) The vector eldN := H%i‘”w%” where[:;:] is the cross product, is calledusit
normal eld.

(d) ThemaiN:U! S E3iscalledGau mapand the moving frameX,; X; Ng
is called theGaul? frameof the surface as displayed in Figure 1.

. ‘

Fig. 1: Gaul3 framéX,; Xw; Ng for the surfacex.

Some properties of the surface can be determined using the rst and second fun-
damental forms. The rst fundamental form allows to make measurements on the
surface: lengths of curves, angles between tangent vectors, areas of regions, etc.
without referring back to the ambient spaeé

De nition 2. LetX:U ! E2 be a surface. The bilinear form ®§X induced by the
scalar produch; i of E® by restriction is called thest fundamental form § of the
surface.

Remark 2Properties of the rst fundamental form:

(a) The matrix representation of the rst fundamental form with respect to the basis
f Xu; Xwg of Ty X is given by

O11G12 _  PXuiXal WX Xl (1)
021 O22 X Xui DX Xl
(b) Let us denote by
g:= detgij)
the determinant of the rst fundamental form.

(c) The rst fundamental form is symmetric, positive de nite, and a geometric in-
variant.

The second fundamental form allows us to study surface curvature and torsion.
One especially interesting consequence of the second fundamental form can be
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found in the Weingarten equations which will prove useful when considering the
main theorem of this paper.

De nition 3. LetX :U! E3be asurface and2 U.

(@) The linear majh : Ty,X! TyX dened byL:= dN, dX, is called theWein-
garten map

(b) The bilinear formll, de ned by Il (A;B) := hL(A);Bi for eachA;B 2 T, X is
called thesecond fundamental forof the surface.

Remark 3Properties of the second fundamental form:

(a) The matrix representation 8f, with respect to the canonical basie;; e,g of
TuE? (identi ed with E?) and the associated ba$i,; X,g of TuX is given by

hiphia _  h NyXei b Ny Xl _ BN Xgul hNG Xgwi 2
Morhze = h N Xah NeXai BN Xaui DN Xawi © @)

hij =h Ni;in = H\I;Xiji:
We can assume thhi, = hy; since we are considering -continuous surfaces.

(b) Let us denote by
h:= dei(hjj)

the determinant of the second fundamental form.

(c) We call two geometric objectongruentto each other iff. there is an isometric
transformation (i.e. only translation, rotation, and re ection are employed) from
one to the other. Congruences preserve lengths and angles.

(d) The second fundamental form is invariant under congruendeanid orientation-
preserving changes of variables.

(e) It can be shown thdlN;;Ni = 0; i = 0;1. Thus,N; can be represented by the
local frame of the tangent plane, and the following relation holds

N = hkX; ©)

0

il o,

where the following equations

ht = h11022 - h12012 2= h12011 - h11912 @)
hi= 12022 : h22012 2= h22011 : h12012 (5)

are calledWeingarten equationgb]. Further,N;; can be expressed in terms of
the Gaul frame, and it can be shown that the following relation holds

1
Xij = hijjN+ é ijxk (6)
k=0
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whereGK = hX; X;ji are called theChristoffel Symbols

Curvature is of great interest in the context of differential geometry. The minimal
and maximal curvaturdg ; ky at a surface point are the basis for the more interesting
de nitions of mean curvature and Gaul3 curvature. In this work, we examine total
curvature of surfaces under deformation in normal direction.

Considering surface curves, we get to know the geometric interpretations of the
second fundamental form:

Let A:= | 1X,+ | 2X, be a tangent vector witjAjj = 1. If we intersect the
surface with the plane given by andA, we get an intersection curyewith the
following properties:

Ws) = Aande;= N;

wheree; is the principal normal vector of the space cuyve

The implicit function theorem implies the existence of this so-calleanal sec-
tion curve To calculate the minimal and maximal curvature of a normal section
curve (the so-calledormal section curvatujewe can use the method bagrange
multipliersbecause we are looking for extreme values of the normal section curva-
tureky with the conditiong;jl 'l 1= 1= jjydj.

Fig. 2: Construction of normal section curves.

As a result of these considerations, we can de ne various notions of curvature:
De nition 4. LetX :U ! ES be a surface and = | 1X,+ | 2X,, a tangent vector
of X atu.

(a) The Weingarten malpis self-adjoint.
(b) Thenormal section curvaturen(l ;1 2) can be computed as:

R

1.1 2y —
kn(l 51 2)= RRE
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Unless the normal section curvature is the same for all directions (umbilical
points), there are two perpendicular directidgsandA; in which ky attains its
absolute maximum and its absolute minimum.

(c) A1 andA; are theprincipal directions

(d) The corresponding normal section curvatutgsandk,, are calledprincipal
curvaturesof the surface.

(e) LetX :U! ESbe asurface ang: 1! ES3 be a surface curve. We denote by
y(t) the orthogonal projection of(t) on the tangent plan§, X at (an arbitrary)
pointP := X(u). Thegeodesic curvaturegkof y atP is de ned as the curvature
of the projected curvg(f) atP. A curvey(t) on a surface is calledgeodesidf
its geodesic curvatuig vanishes identically.

(f) kg = dety,y,N), where dots denote derivatives with respect to the arc length of
y.

(g) H := tracdL) = % (kg + ko) is called themean curvature

(h)K:= ki kp=deflL)= ‘(’j‘z(('l')) is called theGauR curvature RR

(i) Total Gaul3 curvatureor short,total curvature is de ned asKit = ¢ KdX.

Remark 4 (Geodesics and curvature).

(a) An arc of minimum length on a surface joining two arbitrary points must be an
arc of a geodesic.

(b) Assuming the boundary of a surface is given and we have to tin a surface patch
of minimal area, then the minimal curvature of this patch has to vanish, in which
case, the mean curvature 0 will also vanish.

3 Deformations

Let X(u;w) be the masterpiece of an industrial surface. Let us further assume that it
isaminimal surface (i.d4d 0), such that it covers a minimal area. This masterpiece
should be deformed along its normal directi(u;w) by applying a deformation
functionF(u;w) (F : U ! E). Deformations along the normal mean that interior
deformations of the surface are not permitted (no inner bending).

We consider linear deformations of the form

X(u;wt) = X(u;w)+ t F(u;w) N(u;w); (7)

fort2 ( e;e); §= g+ o(t?); such thab(t?) constitutes an in nitesimal change.
Let us notice that the more general case of linear deformations

X(uwit) = X(u;w) + tZ(u;w); )

whereZ(u;w) is a continuous vector eld4:U ! E3), is called an in nitesimal
bending if & = ds’+ o(t?), i.e. the difference of the squares of the line elements
of these surfaces has at least second order [6, 11, 10].
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Let us rst prove two properties of minimal surfaces which will be needed to
prove Theorem 1.

Lemma 1. For a minimal surface Xu;w), i.e. a surface with H 0, we get
(a) [Xu; Nw] + [ Nu; Xw] = 0; _
(b) PN hygNww+ h2oNyy  hioNyw  hioNwdi = 0;

where N= [x“x‘” for g= det 91 G2 _ 011022
021 022

Proof. We will prove part (a) and part (b) of this Lemma separately.

(a) To prove Lemma 1a, we can expand Equation 3 to

2 .
O12°

h h h h
Ny = 12012 5 11022 X, + 11012 5 12911XW ©)

h h h h
Ny = 22012 . 12922Xu + 12012 22911XW;

from which we can immediately conclude the assumption:

(10)

h h h h
DX N+ [ N Xo] = w[xu;xw W[xu;xw]

=(h2012  hog11+ hiogi2  h11022) LQXW]

(h11922+ 22011 2h12012) N
h11G22+ 22011 2h12012

= N
g g

= (ktk) gN

= 2H g N=0:

(b) To prove Lemma 1b, we rst compute the second derivatives.ofhen, using
the Weingarten equations, we can conclude the following relations:

N = Lh%xu X mxw DX
Ny = H]rv‘vxu X vaw X
N = vau X vaw P2
Ny = mxu X mxw WX

Next, we look at the scalar product of the normal vector and its second partial
derivatives. From this computation, we receive all basic components needed to
express part the formula given in part (b) of this Lemma:
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AN Nyl = DN Xgui h2HN; X = hihyy h2hg,
IN; Nowi = h3HNG X hBHN; X = hihp hhy
BN;Nuwi = hEHNG Xowi h2HN; X = hihyy h2hy
IN; Nl = hghNG Xl hEhN; X = hghpy  hhyo:

We want to show thatN; h1iNyw+ hooNyy  hioNuw  hioNwi = 0: Taking the
above results, combined with Equation 4, we arrive at

AN; D1 Nww + h2oNuy hioNuw DNl

AN; Dy Nuwl + DN hgaNuul b NjhgaNgwi b N; haoNgi
huahdhie  hihdho,  hoohihyy  hpohZhy,

+ hyohthyp+ hyohZhpo + hyohdhyg + hyphdhy,
hy1hga(hg + h5) +( hi2)(hy + h5)

=(huhze  (h2)®)( M hp

h
= é(hlzng h11022+ 12012 h22011)

h
6( 2Hg)

2hH = 0:

We are now interested in shape-preserving modi cation of the masterpiece. We
consider in nitesimal deformations which do not change the Gaul3 curvature, and
therefore preserve the total curvature of the minimal surface.

We restrict ourselves to exterior deformations, i.e. deformations in normal di-
rection. Interior deformations, such as perturbations in the tangent plane, are not
permitted. This restriction serves the purpose of exaggerating or reducing features
that are present in the masterpiece but refraining from introducing additional pertur-
bations. We can now introduce the main theorem of this paper:

Theorem 1. A linear deformation
X(uwt) = X(u;w) + tF(u;w)N(u; w) (11)

of a minimal surface Xu;w) witht2 ( e;e), and§= g+ o(t?) preserves the GauRd
curvature if

huaFww+ heoFuu 2hioFuw  Fu(huaGh  huaGh+ hooGHP g

+ Fu(hiG5  hioGh+ hzz@ﬁ)p g
= 0,

DF :

RR .
and therefore preserves the total curvaturgKds of our minimal surface ¢U; w).
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To examine the impact of linear deformation as given in Equation 11, we need
to observe changes in some surface properties. We start with normal vectors, along
which we perturb the surface. Normal vectors deform as follows:

~ 1
N(u;w;t) = mf[xu;xw] +t [FwXe FuXw;N]g+ o(t?):
The deformed second fundamental fofnde ned as

_ HSI;)’j(uui hN;guwi
= N

hu1 huz \ :
s Xwul NG Xl

hi2 hyo
can be written as

hir= N+t [FuXy  FuXw;NJ; Xou+ tRuuN+ 2tFuNy + tFNyi + o(t?)
= hyp+t fRy+ def(FuXy  FuXws N; Xu) + FIN; Nygig + O(IZ)
h22= hao+ t R+ de(FaXy  FuXaiN; Xaw) + FIN; Nawig + o(t?)
hio= hio+ t R+ de(FuXy  FuXi N; Xaw) + FEN; Nuwig + o(t?)
o= hpy+ t fRyu+ def(FuXy  FuXa N; Xaw) + FHN; Nyuig + o(t?) :

We know thatK = ZZ((T)), and we already have the determinant(bet g of

the rst fundamental form, which remains identical to @¢tup to an in nitesimal
change under deformation. To compitewe have to compute the determinant of
the second fundamental form, @8} = hy1 hys  hyo hyo:

det(®) = huy Mo a2 ha2
= hythye  hiohio+ o(t?)

+t fhyRww+ hpde(ReXy  FuXw; N; Xaw) + hiF NS Nywig
+t fhooFuu+ hode(FyXy  FuXw: N; Xyu) + haoF iN; Nygig

t fhyoRwu+ hizdet(FyXy  FuXw; Ny Noy) + hioFN; Nyig

t fhioFuw+ hizde(FuXy  FuXw: N; Nuw) + h12FhN; Nywig
hiihza  hip+ o(t?)
+ tfhpRww+ hade(RuXy  FuXw; N Xaw)

+ hooFuu+ hoadet(Fy Xy FuXwi N5 Xuu)

2hioFuw  2hpadet(FuXy  FuXwi N Nuw)g:

As we know from Lemma 1Hd0N; h1iNww+ hooNuw  hioNuw  h1oNwii = 0 holds.
AssumingF,y = Fyu, We can conclude that
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Bor
hi1hoo N, + o(t?)

K=
= K+t fhyRww+ hooFuy  2hioFuw
+hia(RuGh  RuGh) de(Xu; N Xu)
+ hpa(FaG3  FuGY) det(Xy; N; Xu)
+ 2hp(FuG3  FuG3) def(Xu; N Xu)g:
Since deftXy; N; Xw) = det(N; Xy; Xw) = h N;[Xy; Xwli = p@, the Gaul cur-
vature changes als follows under deformation:
K=K+t fhuFuwt hofus 2nofuet a(FuG RiGHP G

+ho(FuG2 RGHP T 2ma(RG3 FGYHP g0

This concludes the proof of the main theorem of this paper.

4 Examples

In the following examples, we consider linear deformations, assuming bilinear dis-
tribution functionF (u;w) = au+ bw+ c which has the derivativelg, = a, Ry = b,
andF,, = Fyu= 0.

Example 1 (Helicoid)We deform a helicoi, which is a minimal surface of the

form 0 1
ucosw

X(u;w) = @usinwA ;
dw

with d = g—o, wheredy is the number of windings.
This gives us the following derivatives and normal vector:

0 1 0 1 0 1
cosw usinw sinw
Xy = @sinwA X, = @ucosw A Xyw= @ cosw A
0 d 0
0 dsinw !
o X 1 @ dcoswA :

Tk PR

Next, we compute the elemerdg of the rst fundamental form, and the elements
hij of the second fundamental form.
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Fig. 3: A helicoid withu;w 2 [0;6p];d = 2.

2p

g11= WXy Xi = coSw+ sirfw+ 0 =1
g12= hXy; Xwi = usinwcosw+ usinwcosw+ 0 =0
U220 = WX Xl = UZsiPw+ u?cosw+ d? = 2+ d?

. dsinwcosw dcoswsinw
ha1= NG Xoul = P=— =0

u’+ d?

. dsirfw dcogw _ d
M2 Nl = =P o P @
hap = FN: Xl = ducom%nw+ ducoswsinw _ o

u?+ d?

If we computeDF for our surfaceX and our deformation functiof, and seDF = 0
(Theorem 1), we end up with
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DF = hpiFaw+ hooFuu 2hioFuw  (hiaGh  hiaGh+ hooGY) Fupﬁ
+(h11G5; 2G5+ h2oGY) prﬁ

d
0 Fswt 0 Fu 2pP=—— Fuw
u?+ d?

P
0Gh PpGh¥0Gh R WPrd
u?+ d?

d P
+ 06, p———Gr+0G] Ry Prd

=9L Fw+d O Ry+d u Ry
u?+ d?

= 9772d 0+ du R

T Hw

=du Ry

=du b= 0
, b=0;

sinceG}b = MXyw; Xui = 0 andG2 = WXy Xui = U:

Therefore, to make the deformation (total) curvature-preserving, the bilinear distri-
bution function has to be simpli ed to the forau+ c.

The resulting deformation is shown in Figure 4. The in uence of the linear coef-
cient a2 f 0;0:5;1g is given in the rst row: in the beginning, the surface is a
helicoid, but with increasing, it deforms to a funnel. This effect is ampli ed by

the scaling paramet¢® f 1;1:25; 1:5g, since both are multipliers for the normal, as
seen in the second row. The in uence of the constant coef ceedf 0;0:5; 1g is

given in the third row: in the beginning, the helicoid's centre curve is a straight line,
but with increasing, it deforms into a helix, dragging along the adjacent portions

of the surface. The last row demonstrates the effet2df 1; 2; 3g on this additive
portion: the almost vertical surface parts are stretched from little more than a line to
long sheets hanging down.

In real-world examples, parameters have to be chosen carefully (and small) to avoid
such drastic deformations. We used extremely large parameters for this example to
convey a general impression of the nature of change.

Our method is targeted at in nitesimal deformations. For the sake of illustration, we
have chosen extremely large parameters for the deformations in Figure 4. More real-
istically, one has to choose a much smailsince we assuma(t?) to be negligible

in our proof. Thus arisets< 1 as a necessary regirement.

With an initial Kyt = 0:0011, we consider a changeldK;y; = 1 a suf ciently small
change. The discretised helicoid consists of 10201 points, so this results an average
change of 00098 in Gauss curvature per point. This threshold is rst reached for

t = 0:015 withF = 1, and it is last reached fo= 0:086 withF = uin our example.

In Figures 5 and Figures 6, we use the same deformation function parameters as in
Figure 4. Both Figures illustrate holdK;o; changes with increasing In Figure 5,
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@F=0;t=1 b)F=05u;t=1 C)F=ut=1
(dF=u;t=12 (e)F=u;t=14 f)F=u;t=16
(@F=0;t=1 (h)F=05;t=1 HF=1t=1

()F=1t=2 KF=1;t=3 ()F=1t=4

Fig. 4: The impact of deformation on the helicoid, shown separatelg;fgt. In

the rst and third row, onlyF = au+ c is varied. The rst row shows a varying
coef cient a with a xed coef cient ¢ = 0, while the third row shows a varying
coef cient c with a xed coef cient a= 0. For the second and fourth row, we keep

F xed, while varying the scaling parametein order to demonstrate the in uence

of scaling on the linear and constant coef cients. Figures (4a) and (4g) display the
same surface from different perspectives.
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we show the change until the threshold@K; = 1 is reached. In Figure 6, we
continue deforming untit = 1:6, the maximum deformation used for the upper
half of Figure 4, to demonstrate the instabilties occuring for larde these cases,
the prototype of a model has to be adapted before applying further in nitesimal
bendings.

For this particular example, the signsacdindc do not affecDK;o; when varied indi-
vidually since the helicoid is symmetric and applying the deformation with opposite
sign results in a similar deformation in opposite direction.

a)F = 0:5u. (b) F = 1u.
(c)F = 0:5. (dyF=1.

Fig. 5: Plot ofDKyo (vertical) over increasing(horizontal) up tgDKqeg = 1.

Example 2 (Fandisk)Large industrial surface models are typically composed of
smaller parts. E.g. consider a turbine: it is composed of fan blades, fandisks, and
many other components. It would not necessarily make sense to deform the entire
model at once, but it is relatively easy to modify a single part like a fan blade or a
fandisk.

In this example, we present deformations on Hoppe's fandisk model [12]. We have
recreated the part marked in the rendering of the original model (Figure 7a) from
Bézier surface patches (Figure 7b). As most real-world examples, this model has
hard edges. We preserve them as surface patch boundaries between adjacent patches.
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a)F = 0:5u. (b) F = 1u.
c)F = 0:5. (dF=1.

Fig. 6: Plot ofDKy (vertical) over increasing(horizontal) up td = 1:6.

To deform the entire model rather than a single patch at a time, we take the average
of adjacent surface normals to perturb edges. Note that this can only be done on
oriented manifolds.

We now take the technique we developed for minimal surfaces and adapt it to gen-
eral surfaces. Our goal remains to keep the surface area as minimal as possible so
the material cost remains as minimal as possible.

Now, we deform all surface patches with

X(uwt) = X(uw)+ t F(uw) N(uw);

where
F(u;w) = au+ bw+ ¢

is our deformation function.

In Figure 8, we demonstrate the effect of isolated changastpt on the deforma-

tion. Figure 9 illustrates some deformations with combined parameter changes.

The colour map in Figures 7b, 8, and 9 depends on the Gaul3 curvature at each point.
Blue areas are minima of Gaul3 curvature, red areas are maxima of Gaul3 curvature
relative to the rest of the model. White areas are close to the median Gaul3 curvature.
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(a) Model shown in Blender. (b) Recreated as surface patches.

Fig. 7: Fandisk model by Hoppe [12] and a portion of it recreated fraeai&
surface patches.

@) F(uw) = u. (a> 0) (b) F(u;w) = w. (b> 0) (©)F(uyw)=1.(c> 0)

dF(uw)= u.(a<0) Ee)F(uw)= w.(b< 0) ) F(uw)= 1.(c<0)

Fig. 8: Fandisk model under deformation with 0:1.
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@F(uw=u w (b)F(uuw)= u+w

() F(uw)= 2u 2w (d)F(uyw)=  2u+ 2w

Fig. 9: Isolated change of one parameter at a time titt0: 1.

In Figure 10, we show changes DKy over a deformation with 2 [0; 10]. For
relatively small values df, the deformation-induced change is stable. However, as
the deformation grows, instabilities begin to occurtfapproximately between®

and 20. For extremely large values tfthe deformation is stable again, however
the deformed surface no longer looks similar to the original one.

5 Conclusion

The goal of this work is to deform the masterpiece in a meaningful way, i.e. enhance
or decrease features; this can be done by perturbing in normal direction. Since there
is a direct connection between total curvature and bending energy, the restriction of
total curvature serves to restrict the bending energy. This maintains a surface area
that is as minimal as possible and therefore reduces material cost.
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@F=u. (b)F = w. (c)F=1.

Fig. 10: Change DKy fort 2 [0; 10].

We have presented a method to perturb surfaces without altering their total cur-
vature, thereby keeping their bending energy low. This results in surfaces with a
small surface are which can be manufactured at lower cost than surfaces which have
a higher total curvature and higher bending energy. The surface and deformation
function given in Example 1 have nice analytic descriptions, so it is possible to
make all computations manually. For the surface in Example 2, this is not possible
since we have to de ne normals on hard edges.

We can deform a surface along normal direction, both outwB(d;{v) > 0) to
increase features, and inwafe((); w) < 0) to decrease features. While the examples

in Fig. 4 only present the results for deformation with a posikiyehe results look

very similar (but upside down) for a negatie

In real-world examples, the surface description is a lot more complicated, making
it more dif cult to comprehend what exactly happens to the surface during defor-
mation. A lot of such complex models possess sharp edges on which tangents and
normals are not clearly de ned. In these cases, they have to be estimated from the
neighbourhood of an edge.

Our method is subjected to the same numerical limitations as partial differential
equations. It is proven for objects with an analytic description, however, they are
applicable to a meshes at the sacri ce of accuracy. In our rst example, we com-
puted normals and tangents analytically, but the actual deformation is performed on
a discretised version of the model. Given an arbitrary mesh, our approach is lim-
ited by the availability of tangents and normals. Solutions to this are presented by
[17, 3, 19, 20]. If the surface has a boundary, we are, again, limited by the avail-
ability of tangents and normals. However, given this information, the deformation
procedure does not discriminate between boundary points and interior points. For
a given surface patch, one can assume the normal and tangent on the boundary to
be identical to its neighbourhood. Under in nitesimal deformations, the genus of a
model will be preserved but if a deformation is very large, deformations can intro-
duce self-intersections.

It is possible to introduce a ow on a given surface. One of the important and com-
plicated challenges we want to address in the future is to apply our deformations in
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a way that they not only preserve the index sum of all singularities of a vector eld
de ned on this surface, but also leaves the indices of each singularity unchanged.
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