Pré-Publication, Document De Travail Année : 2025

Localization of the eigenfunctions of a Bloch-Torrey operator on the half-plane

Résumé

We consider a non-self adjoint operator of the form -h 2 ∆ + i(V (x) + α(x)y) on the upper half plane y > 0 with Dirichlet boundary conditions on {y = 0} with V ⩾ 0, V admitting a non-degenerate minimum at x = 0 and α ′ (0) = 0. We study its eigenfunctions associated to the smallest eigenvalues in magnitude in the semiclassical limit h → 0. Elementary variational estimates show that these eigenfunctions are localized near the point (0, 0) at the scales O(h 1/3 ) in x and O(h 2/3 ) in y. In this paper, we show that the O(h 1/3 ) localization in x is not optimal; more precisely, we establish that the eigenfunctions are concentrated in a neighborhood of size O(h 1/2 ) of the axis {x = 0}, and this scale is shown to be sharp. The proof relies on the symbolic calculus of operator-valued pseudodifferential operators.

Fichier principal
Vignette du fichier
BTplat.pdf (688.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-05430052 , version 1 (23-12-2025)

Licence

Identifiants

  • HAL Id : hal-05430052 , version 1

Citer

Martin Averseng, Nicolas Frantz, Frédéric Hérau, Nicolas Raymond. Localization of the eigenfunctions of a Bloch-Torrey operator on the half-plane. 2025. ⟨hal-05430052⟩
0 Consultations
0 Téléchargements

Partager

  • More