From invariant measures to orbit equivalence, via locally finite groups - Institut Camille Jordan
Article Dans Une Revue Annales Henri Lebesgue Année : 2023

From invariant measures to orbit equivalence, via locally finite groups

Résumé

We give a new proof of a theorem of Giordano, Putnam and Skau characterizing orbit equivalence of minimal homeomorphisms of the Cantor space in terms of their sets of invariant Borel probability measures. The proof is based on a strengthening of a theorem of Krieger concerning minimal actions of certain locally finite groups of homeomorphisms, and we also give a new proof of the Giordano–Putnam–Skau characterization of orbit equivalence for these actions.
Fichier principal
Vignette du fichier
AHL_2023__6__259_0.pdf (832.37 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-04442122 , version 1 (23-09-2024)

Licence

Identifiants

Citer

Julien Melleray, Simon Robert. From invariant measures to orbit equivalence, via locally finite groups. Annales Henri Lebesgue, 2023, 6, pp.259-295. ⟨10.5802/ahl.165⟩. ⟨hal-04442122⟩
49 Consultations
3 Téléchargements

Altmetric

Partager

More