Molecular Regulation of Cardiac Conduction System Development
Résumé
Purpose of review: The cardiac conduction system, composed of pacemaker cells and conducting cardiomyocytes, orchestrates the propagation of electrical activity to synchronize heartbeats. The conduction system plays a crucial role in the development of cardiac arrhythmias. In the embryo, the cells of the conduction system derive from the same cardiac progenitors as the contractile cardiomyocytes and and the key question is how this choice is made during development..
Recent Findings: This review focuses on recent advances in developmental biology using the mouse as animal model to better understand the cellular origin and molecular regulations that control morphogenesis of the cardiac conduction system, including the latest findings in single-cell transcriptomics.
Summary: The conducting cell fate is acquired during development starting with pacemaking activity and last with the formation of a complex fast-conducting network. Cardiac conduction system morphogenesis is controlled by complex transcriptional and gene regulatory networks that differ in the components of the cardiac conduction system.
Origine | Fichiers produits par l'(les) auteur(s) |
---|