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Abstract: 

Purpose of review: The cardiac conduction system, composed of pacemaker cells and 
conducting cardiomyocytes, orchestrates the propagation of electrical activity to synchronize 
heartbeats. The conduction system plays a crucial role in the development of cardiac 
arrhythmias. In the embryo, the cells of the conduction system derive from the same cardiac 
progenitors as the contractile cardiomyocytes and and the key question is how this choice is 
made during development..  

Recent Findings: This review focuses on recent advances in developmental biology using the 
mouse as animal model to better understand the cellular origin and molecular regulations that 
control morphogenesis of the cardiac conduction system, including the latest findings in 
single-cell transcriptomics. 

Summary: The conducting cell fate is acquired during development starting with pacemaking 
activity and last with the formation of a complex fast-conducting network. Cardiac conduction 
system morphogenesis is controlled by complex transcriptional and gene regulatory networks 
that differ in the components of the cardiac conduction system.  
 

Introduction 
The heart, along with the digestive system, is the only organ capable of initiating its 

own contractions. Cardiac automaticity is made possible by the presence of a natural 

pacemaker within the heart, the Sinoatrial Node (SAN)1, which spontaneously generate action 

potentials (AP). In mammals and birds, the AP is then transmitted to the rest of the heart by a 

complex network of specialized cardiomyocytes (CMs) forming the cardiac conduction system 

(CCS) 2. The various components of the CCS sequentially propagate the electrical impulse 

throughout the heart, ensuring the coordination and stereotypy of the beats (Figure 1). 
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First, rapid propagation of the AP within the atria ensures synchronous contraction of 

both atria. The AP then reaches the unique electrical connection between the chambers: the 

atrioventricular node (AVN), where it is advantageously slowed, optimizing ventricular filling 

prior to contraction. The AP is then transmitted to the fast-conducting ventricular conduction 

system (VCS) or His-Purkinje. It passes through the His bundle or atrioventricular bundle (AVB), 

which then divides into the right and left bundle branches (RBB and LBB) on either side of the 

septum. The isolated RBB and LBB carry the AP along the interventricular septum to the apex 

and to the terminal part of the CCS: the Purkinje fiber (PF) network of each ventricle. Finally, 

the PF network conducts the AP along the ventricular free walls as it transmits the 

depolarization to the working myocardium, initiating ventricular systole from apex to base. 

The electrophysiological characteristics of cardiomyocytes within the CCS result from 

the expression of a wide range of conduction-specific genes, including ion channels 

responsible for pacemaker activity and action potential characteristics, gap junctions 

responsible for conduction velocity, and low levels of contractile proteins3–6. Importantly, 

each compartment of the CCS is unique, with specific physiological and histological 

characteristics adapted to their role in cardiac conduction7. For example, both the SAN and 

the AVN rely on Hcn4, the main cation channel responsible for the Ifunny current, which 

underlies their automaticity8,9. Furthermore, the heterogeneous conduction velocities 

observed in the different compartments of the CCS are made possible by the expression of a 

combination of gap junctions with different conductance. Specifically, the SAN and AVN, 

characterized by slower conduction, predominantly express connexins of low conductance, 

such as Cx45 and Cx30.2 (9pS)3,10. In contrast, fast-conducting components like the atria, AVB, 

RRB LBB, LPF and RPF express Cx40, which forms high conductance gap junctions (~180pS)3,11 

(Figure 1).  

Although CCS cells share characteristics with neurons, such as genetic markers, 

electrophysiological properties and electrical function12, they are CMs. Indeed, retrospective 

clonal analysis, revealed a common cellular origin between conducting and contractile 

CMs13,14. More precisely, the different compartments of the CCS show close lineage 

relationship with contractile cardiomyocytes from neighboring myocardium, suggesting that 

conductive and contractile properties are acquired during cardiac morphogenesis15–18. Thus, 

although all CCS compartments are integrated into a functional conducting pathway in the 

mature heart, their origin and developmental regulation largely differ. 
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Importantly, despite its small volume within the heart, the CCS plays a critical role in 

cardiac function and in the occurrence of cardiac arrhythmias14,19. Understanding the precise 

regulation of CCS patterning during heart development is therefore of paramount importance. 

Due to the considerable influence of genetics, the mouse - which has a very similar 

morphology, function and molecular regulation of the CCS to that of humans20,21 – has become 

the animal model of choice for understanding the development of the CCS. 

   

Genetic control of SAN development 
 The heart is the first functional organ in the embryo with transient calcium releases22 

and focal contractions starting as early as cardiac crescent stage 23,24, and soon being replaced 

by peristaltic contractions. However, these first cardiac activities can initiate anywhere in the 

heart tube. A dominant pacemaker emerges at the inflow pole of the heart only after, in a 

region progressively enriched in Hcn4, which prefigures the emplacement of the SAN25.  

In the adult heart, SAN cells are characterized by the expression of a unique set of ion 

channels, i.e. Hcn4 and gap junctions, such as Cx45 and Cx30.2, which differs from the atrial 

myocardium that expresses Cx40, Cx43 and Nppa26. The SAN is divided into a large head and 

a tail forming a comma-shaped structure at the junction of the right atrium and superior vena 

cava1. Both parts of the SAN arise from a mesodermal pool of progenitors that diverges early 

from both the first and second heart fields (FHF and SHF) and that will also give rise to the 

sinus venosus (SV)27–30. The subdivision of the SAN is delineated by distinct gene programs 

with the expression of transcription factors Tbx18+/Nkx2-5- in the head region and Nkx2-

5+/Tbx18- in the tail30,31. Strengthening a bipartite model for SAN development, genetic tracing 

analyses using inducible Hcn4-CreERT2 mice lines indicate a progressive temporal activation 

of Hcn4 in the SAN, with early expression in progenitors from the tail (from E7.5) and later 

expression (from E8.5 onward) in the head16.  

The differentiation and maintenance of the pacemaker activity of the SAN is controlled 

by a gene regulatory network involving Tbx18, Tbx2, Shox2, Nkx2-5 and Isl1 32,33. 

 Illustrating the importance of Tbx18 for SAN development, inactivation of Tbx18 

causes a hypoplastic SAN with absence of the head and reduced tail region30.  

At early stage of development, Short stature homeobox 2 (Shox2) gene expression is 

extended in the sinus venosus to cells presenting pacemaker activity and co-expressing Hcn4 

and Nkx2-534. Later during development, pacemaker cells are restricted to the mature SAN 
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under the control of a transcriptional balance between Shox2 and Nkx2-5 to regulate cell fate. 

Shox2 is not directly required for the pacemaker activity of the SAN but the conditional 

deletion of Shox2 in Nkx2-5 tail domain induces sick sinus syndrome in association with a loss 

of the junction between SAN and atria34. The T-box transcription factor Tbx3 is expressed in 

the developing conduction system and, similar to Shox2, acts as a transcription repressor of 

the working myocardium program by down regulating the expression of Gja5, Gja1 and Scn5A 

in pacemaker cells35. Conditional overexpression of Tbx3 converts atrial cells to a pacemaker 

phenotype characterized by a downregulation of Cx43 and upregulation of Hcn4 expression, 

which results in ectopic pacemakers36. SAN homeostasis in the adult is also tightly dependent 

on Tbx3 expression indicating its importance not only for pacemaker specification but also for 

maintenance of conduction system integrity37. In contrast to these transcriptional repressors, 

Isl1 encodes for a LIM-homeodomain transcription factor and serves as a positive 

transactivator for the expression of pacemaker specific genes like Tbx3, Shox2 and Hcn438. The 

conditional inactivation of Isl1 specifically in the SAN at different stages of development 

reveals that Isl1 affects the SAN size and induces bradycardia by playing a cell-autonomously 

role in proliferation and differentiation of pacemaker cells26,39. Moreover, any disturbances of 

Nkx2-5 expression in the adult heart correlate with sinus diseases, showing that the regulation 

of this transcriptional cascade is also crucial for the maintenance of pacemaker phenotype40. 

Nkx2-5 is required to form the junction between tail and head. Indeed, inactivation of Nkx2-5 

in the Shox2 domain does not hamper the development of the node but disturbs the atrial 

activation suggesting a precise role for this junction41. In summary, pacemaker cells originate 

from an independent mesodermal lineage that give rise to the sinus venosus and starts to 

synchronize heartbeats at E8.0. Defects in SAN development or dysfunction of pacemaker cells 

in either SAN compartment leads to bradycardia or sick sinus syndrome42. 

 

Genetic control of AVN development  
The AVN is critical in slowing atrioventricular conduction, thereby introducing a 

necessary delay between atrial and ventricular contraction43. The AV delay functionally 

develops around E10, when the chamber-myocardium acquire a conductive phenotype44–46, 

while the atrioventricular canal (AVC) and OFT, deprived of Cx40, remains slow11. As 

development progresses, the differentiation of the AVN is marked by the expression of Tbx3, 

Hcn4, Cx30.2 and Cx45, giving the AVN its pacemaker and slow conducting properties10,43,47,48. 
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In parallel, the reinforcement of electrical insulation through the development of fibrous 

tissues further isolates the AVN, leaving it as the only electrical communication between the 

atria and ventricles.   

Genetic tracing using respectively Tbx2 or Hcn4 has shown that the AVN arises from 

the AVC 49,50 and commit to a AVN fate by E10-E1118. On the other hand, the annulus fibrosus 

arises from epithelial-mesenchymal transition (EMT) of epicardial cells at the AV junction27.   

The establishment of the AV junction relies on different signaling pathway on the right 

and left side. On the left side, both the transcriptional program of the AVC myocardium and 

establishment of the annulus fibrosus relies on Tbx2 50. Consequently, deletion of Tbx2 results 

in accessory pathways, detectable anatomically and functionally by optical mapping 51. On the 

other side, the establishment of the right AV junction depends on Notch and Wnt signaling 

52,53. Accessory pathways are detectable after Notch activation or in a Wnt loss of function 

(LOF) model while Wnt activation induces ectopic annulus fibrosus in ventricular myocardium 

52. Rescue experiments suggest that Notch-mediated ventricular pre-excitation results in part 

from downregulation of Wnt signaling 54. Notch inhibition also regulates the AV conduction 

pathway by interfering with AVN maturation. Indeed, downregulation of Notch signaling leads 

to formation of a small AVN associated with an elevated conduction velocity between atria 

and ventricles 53. However, Notch signaling does not affect the early development of the AVC 

or the expression of Tbx3.  

   

The specification and development of nodal cells is very sensitive to Nkx2-5 and Tbx3 

gene dosage during embryonic development 55–58. Indeed, AVN progenitors are absent in 

Nkx2-5 null embryos, and a small AVN develops in Nkx2-5 haploinsufficient mice or after 

postnatal deletion of Nkx2-5 56,59; likewise, Tbx3 hypomorphic or AVC-deleted alleles cause AV 

blocks and hypoplasia of the CS. Moreover, inducible deletion of Tbx3 in the adult heart causes 

AV blocks associated with a reduced number of AVN cells 37. Interestingly, the severity of these 

AV blocks decreases after a few weeks, suggesting that the AV conduction is able to partially 

recover from adult depletion of Tbx3 37. AVN development is also specifically impaired after 

ventricular deletion of Gata6 by direct inhibition of its target gene Id2 60. Inactivation of Id2, 

encoding a transcriptional repressor, causes abnormal development of the AVN by perturbing 

the cell cycle and Hcn4 expression. As mentioned above, the maturation of the AVN is also 



 6 

important in the development of AV conduction pathway and this step is disturbed in MyoR 

mutants by interfering with Cx30.2 expression through a direct interaction with Gata461.  

 Defective development of the AVN is associated with AV electrical insulation 

disturbances or AV delay that cause AV accessory pathways or AV blocks.  

 

Genetic Control of VCS development 
Before the emergence of a specific ventricular conduction system, cardiac conduction 

follows a unidirectional path from the inflow tract to the LV, RV and finally outflow tract (OFT). 

The mature activation pattern, characterized by two parallel apex-to-base activation waves, 

only emerges after ventricular septation and the development of a fast-conducting 

compartment in the subendocardial myocardium: the Cx40 positive trabeculae11,45,46,62,63. 

Subsequently, the gradual restriction of Cx40 expression to the future LBB, RBB and PF 

coincides with their maturation, eventually giving rise to the well-defined VCS11,14. 

 The proximal VCS – including AVB, RBB and LBB - arises from the primary 

interventricular ring (PIR) 64. Interestingly, despite the close proximity and similarities of the 

BB and PF networks in the adult heart, the PF network does not originate from the PIR like the 

BB64. Instead the PF network arises from the Cx40+ trabeculae14,65, which is consistent with 

the conductive function ensured by the trabeculae during development45,46,62,63. Furthermore, 

the molecular signature of the trabeculae closely resembles that of mature PFs, and the 

progressive restriction of trabecular markers, including Cx40, Nppa, Irx3, Etv1, and Sema3a, 

during compaction reflects the maturation process of the PF network11,14,65–69.  

The timing of segregation also varies between the components of the VCS, occurring 

later in distal parts of the VCS. The AVB segregates the earliest, prior to E7.5, as shown by 

clonal analysis of SMA+ cells70. The segregation to the LBB starts prior to E7.570 and extends 

after E10.564. Finally, the PF network grows by recruitment of new conductive cells  in 

successive waves throughout development65,71. The first committed PFs can be observed as 

early as the linear heart tube stage (~E7.5) and likely define a scaffold for the formation of the 

mature VCS65. Interestingly, bipotent trabecular progenitors, which can give rise to both 

contractile CMs or be recruited to a PF fate, persist in the trabeculae until the time of birth. 

These bipotent progenitors are responsible for a second wave of PF recruitment that is key to 

increasing the complexity and density of the PF network65. After E14.5, the bipotent pool 

decreases dramatically and disappears by birth, marking the final segregation of contractile 
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and conductive lineages 65. Recently, scRNAseq at fetal stages (E16.5) identified two sub-

clusters of immature PFs, one of which expresses intermediate levels of PF genes (Gja5, Etv1, 

Sema3a, etc.)72. This demonstrates heterogeneity in the level of differentiation among PFs, 

further confirming that conducting cells are recruited sequentially.  

 The early development of the LBB, like other derivatives from the PIR, is primarily 

regulated by Tbx3. At these early time points, Tbx3 refrains a fast conduction phenotype57,58, 

including through the inhibition of Cx40 expression. This is only around E14.5 that a gene 

regulatory network including Nkx2-5, Tbx5, Id2 is activated in the AVB and BB, favorizing the 

expression of the fast-conducting proteins including Cx40 and Nav1-558,73,74. Importantly, 

mutations of Tbx5 in these VCS components results in spontaneous ventricular tachycardia, 

lethal arrhythmias73 and AV blocs74.  

The proximity of the VCS with the endocardium suggests an instructive role of this 

tissue in the development of the VCS. Nrg1, which is expressed by endocardial cells during 

development, is sufficient to convert immature CMs to a conductive phenotype without 

impacting proliferation75,76. Nrg1 functions through the Ras MAPK pathway to activate Etv1, 

the most enriched TF in the developing and mature VCS67,76. Consistent with the role of Nrg1 

as a ventricular conduction system differentiation driver, its ectopic overactivation in 

embryonic CMs upregulates a subset of His-Purkinje–specific genes 77. Additionally, other 

factors may predispose subendocardial CMs to be Nrg1 responsive75, since, even under 

homogenous addition of Nrg1 in organ culture, conductive conversion occurs preferentially in 

the subendocardial myocardium. Furthermore, responsiveness to Nrg1 decreases as 

development proceeds accompanying the progressive segregation of conductive and 

contractile lineages. After conductive recruitment, Nrg1 appears to play a role in the late 

differentiation of PFs, as suggested by the conduction abnormalities observed following post-

natal treatment with Nrg1-antagonist76 (Figure 1).  

In parallel, Notch signaling also regulates conductive recruitment. Myocardial 

overactivation of Notch signaling, either in vivo throughout development, or transiently in 

neonatal CMs, is sufficient to induce the acquisition of a conductive phenotype by a subset of 

CMs without affecting their proliferation53. Notch induces the upregulation of both fast 

conducting proteins, Cx40 and Nav1-5, and nodal proteins, Cx30.2 and Hcn1, leading to the 

acquisition of PFs electrophysiological properties by former working CMs and thereby, to VCS 

hyperplasia. Interestingly, only subendocardial CMs are responsive to Notch overactivation, 
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suggesting that endocardial derived cues, such as Nrg1, could cooperate with Notch to pattern 

the VCS in subendocardial regions. Conversely, CHF1/Hey2, seems to repress conductive fate 

in the surrounding working myocardium and consistent with the observation of VCS 

hyperplasia in CHF1/Hey2 KO mice78. Thus, Notch signaling regulates PFs patterning both by 

promoting a conductive fate within the VCS and by repressing conductive conversion in the 

neighboring working myocardium. Interestingly, conductive conversion under Notch 

overactivation, in the neonatal period, uncovers a conserved plasticity between conductive 

and contractile fates53. 

ETS Variant Transcription Factor 1 (Etv1) is directly activated by Nrg1 signaling and is 

necessary and sufficient to instruct a conductive phenotype. Indeed, Etv1 KO mice display a 

hypoplastic VCS, especially in the mid and apical PF network where the number of 

characteristic ellipses is reduced 76. Conversely, overexpression of Etv1 in neonatal CMs or 

human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is sufficient to 

induce a conductive phenotype67,76. Etv1 also regulates the expression of Cx40 and Scn5a in 

PFs, and thereby their electrophysiological properties. Thus, the Nrg1 – Etv1 axis functions as 

an upstream determinant of PF commitment and differentiation67,75,76.  

Part of the function of Etv1 appears to be mediated by the transcription factor Nkx2-

567,76. Nkx2-5 expression is up-regulated in the developing His bundle, bundle branches and 

PFs in a spatiotemporal correspondence with the recruitment of conductive cells56,67,72,76,79,80. 

This upregulation is necessary for a conversion to a conductive fate as attested by hypoplasia 

of the  AVN, His bundle, LBB and PF network in Nkx2-5 haploinsufficient mice56,59,65,81,82. 

Interestingly, the late recruitment of PFs is more sensitive to Nkx2-5 dosages than the early 

one. Thus, while the BB and the primitive scaffold are minorly affected in the Nkx2-5 

haploinsufficient mice, the mid and apical PF network is dramatically hypoplastic, with a 

reduction of two to three fold in the number of ellipses56,59,65,81,82. Surprisingly, the 

differentiation of the remaining PFs in Nkx2-5 mutant doesn’t seem to be affected, as their 

electrophysiological and Cx40 gap junctions number appears normal. However, other studies 

report that Nkx2-5 directly and indirectly – in part by upregulating of the homeodomain 

protein HOP – regulates a number of gap junctions and ion channels, including Cx4083. 

Consistent with this, some cells with intermediate maturation have been identified in Nkx2-5 

haploinsufficient mice by their expression of EH-myomesin without Cx4081. Finally, Nkx2-5 is 

implicated in the maintenance of a conductive phenotype, as deletion of one copy of Nkx2-5 
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at birth leads to a progressive loss of fast conduction proteins, including Cx40 and Hcn484. 

Nkx2-5 expression in conductive cells is also regulated by the co-repression of the homeobox 

transcription factor prospero-related homeobox protein 1 (Prox1) and HDAC385.  

In cooperation with Nkx2-5, Tbx5 and Irx3 orchestrate the recruitment and 

specification of PFs and can thus partially compensate for low levels of Nkx2-5 in some 

conditions (Figure 1). 

Irx3, which is expressed in the immature proximal VCS and in a subset of trabeculae 

during development, is restricted to the VCS of the adult heart. Similar to Nkx2-5 

haploinsufficient mice, Irx3 KO mice develop hypoplastic bundle branches and PF network, 

defects that manifest mainly in the postnatal period86. Furthermore, Irx3 regulates gap 

junction expression in PFs by indirectly upregulating Cx40 and directly inhibiting Cx43 

expression in competition with Nkx2-568. As a result, Irx3 KO mice express only half of the WT 

levels of Cx40 in their remaining VCS, while their LBB ectopically express Cx43, resulting in 

abnormal contact between the LBB and surrounding myocardium. 

Similar to Nkx2-5, Tbx5 has a pleiotropic role in cardiac development causing 

embryonic lethality in Tbx5-/- mice and multiple cardiac defects in Tbx5 haploinsufficient 

mice87. Tbx5 expression is enriched in the mature VCS compared to the surrounding 

myocardium and maximal levels of Tbx5 are required for the recruitment of conductive cells 

in the His bundle and bundle branches67,74,76. Consequently, Tbx5 haploinsufficient mice have 

a hypoplastic His bundle, and immature bundle branches. In addition, Tbx5 cooperates with 

Nkx2-5 to synergistically activate Cx40 and Nppa expression87. To date, the role of Tbx5 

specifically in PFs has not been investigated. The cooperative role of Nkx2-5, Tbx5 and Irx3 is 

illustrated by their direct physical interactions and the presence of neighboring binding sites 

for all three TFs in the regulatory regions of a large number of target genes including cyclin-

dependent kinase inhibitors86. Furthermore, compensatory upregulation of Nkx2-5 and Tbx5 

has been reported in Irx3-/- mice, while double or triple KO mice show increasing defects in 

VCS patterning86,88.  

miR-1, a direct target of Nkx2-5, is the most abundant microRNA in the postnatal heart 

and plays a pleiotropic role in regulating CM electrophysiology, proliferation and VCS 

development89–91. During development, miR-1 represses CM proliferation through a Cdk6 

/Pocket protein axis, resulting in control of myocardial and VCS growth90. Consequently, 

premature expression of miR-1 in CMs results in reduced CM proliferation and hypoplasia of 
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the PF network. Conversely, Pocket proteins 3KO (p107-/-, p130-/-, Rbdel/del) mice have 

hypertrabeculated ventricles due to uncontrolled CM proliferation in both the compact layer 

and trabeculae resulting in thickening of the His Purkinje system92. These results show that 

increasing or decreasing the proliferation of the trabeculae, which contain the pool of PF 

progenitors, is sufficient to increase or decrease the production of PFs90,92. 

Hand1 is expressed in the LV from E8.5, and, together with Hand2, regulates trabecular 

identity and represses trabeculae proliferation93. Mice lacking Hand1 expression in the LV 

(Hand1ΔLV/ΔLV) develop a hyperplastic VCS, which may be due to increased trabecular 

proliferation94. However, both the left and right VCS are hyperplastic in Hand1ΔLV/ΔLV mice, 

even if Hand1 is only expressed in the LV of developing hearts. This, together with the 

observation that Hand1 is expressed in the His bundle, RBB, LBB, left PFs and, potentially right 

PFs in mature hearts94, suggests that Hand1 may have an additional role in PF recruitment or 

differentiation (Figure 1). 

PFs specifically express three proteins of the immunoglobulin family: Cntn2, Ncam-1 

and Alcam95,96. LOF models indicate that Ncam-1 KO mice have a hypoplastic VCS, especially 

at the apex, similar to of Etv1 KO, Irx3 KO or Nkx2-5 heterozygous mice, supporting a role for 

Ncam-1 in VCS patterning. In addition, polysialylated Ncam-1 is essential for PF differentiation 

by controlling the localization of Cntn2, Ncam-1, Cx40, components of the desmosomes and 

adherent junctions at the intercalated discs. It is interesting that an adhesion molecule can 

play a role in the patterning of the VCS and may reveal a feedback loop between 

electromechanical coupling in the PFs and PF commitment and differentiation. Furthermore, 

this may explain why some mutant mice develop hypoplasia of the VCS specifically in the 

neonatal period81,86, when the maturation of the intercalated discs takes place (Figure 1). 

Novel insights into the differentiation trajectories of CCS  
Recent advancements in single-cell transcriptomic technologies, including single-

nucleus RNA sequencing (snRNA-seq) and spatial transcriptomics (STx), have significantly 

enhanced our understanding of the transcriptomic landscape of the CCS, improving our ability 

to capture cell-state heterogeneity and define developmental trajectories underlying CCS 

differentiation. In 2019, single-cell RNA-seq (scRNA-seq) analysis on microdissected mouse 

embryonic hearts, including the sinoatrial node (SAN), atrioventricular node (AVN), His 

bundle, and Purkinje fibers (PF), provided the first comprehensive single-cell transcriptional 
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profiling of the developing CCS72. Unsupervised cell clustering along with gene enrichment 

analysis identified novel conductive cell markers (Igfbp5, Cpne5, Smoc2, Rgs6, Ntm) and 

revealed the existence of rare conduction cell subtypes in each CCS component 72.  Direct 

comparison of embryonic and postnatal scRNA-seq datasets with postnatal stages highlighted 

high transcriptional similarities between fetal and neonatal stages suggesting that CCS cell 

fate, particularly for the SAN, cAVN and proximal VCS, may largely occur by E16.5 97. Cell-state 

heterogeneity of the CCS, particularly of the SAN, has also been reported in the adult murine 

heart, including a core cell cluster functionally related to the regulation of heart rate. Among 

the canonical SAN markers, Vsnl1 has been identified as a novel SAN gene whose expression 

regulates the beating rate of hiPSC-CMs and mouse hearts 98. 

 The combination of single-cell analysis with unbiased, transcriptome-wide spatial gene 

expression information is now opening new horizons in understanding cardiac cell states in 

relation to their anatomic location within the different cardiac compartments. Integration of 

scRNA-seq and spatially resolved transcriptomic analysis in the developing murine heart has 

identified a novel cardiomyocyte population expressing dopamine beta-hydroxylase (Dbh+ 

CMs), which is transcriptionally and functionally associated with the CCS in developing and 

mature murine hearts 99.  

More recently, spatiotemporal resolved scRNA-seq analysis of the developing human 

heart has provided novel insights into the differentiation of the CCS 100,101. In particular, a 

detailed molecular characterization of conductive cardiomyocytes in the developing CCS 

compartments highlights their distinct electrophysiological properties in close relationship 

with spatial and functional associations with other cell types, including specialized fibroblast 

cell states in the nodes, endocardial cells in the ventricular conduction system, and neurons 

in the developing autonomic innervation 100. The increasing generation of new multiomic 

datasets in both, CCS development and disease, will be instrumental for gaining novel insights 

into CCS development and translate this information to identify novel therapeutic approaches 

to treat cardiac arrhythmias. 

Conclusions 
The CCS is a complex tissue with its different compartments having specific functions 

and thus, specific electrophysiological properties in the adult. Each compartment arises from 

different populations and its development is regulated by distinct gene regulatory networks.  
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The development of the CCS involves the proliferation of progenitors, the recruitment to a 

conductive fate, the acquisition and the maintenance of conductive properties. Though these 

processes are in theory independent, many factors have a pleiotropic role in the regulation of 

several of these steps. Dysregulation of any of these processes can result in mispatterning of 

one or several components of the CCS, such as hypoplasia. Importantly, all model of CCS 

hypoplasia - Nkx2-5+/-, Tbx5+/-, Irx3-/-, Id2-/-, Etv1-/-, Ncam-1-/- mice - present slowed conduction 

in the affected compartment(s)59,68,74,76,81,86,96,102–104. Moreover, abnormal 

electrophysiological properties of conductive cells, caused by abnormal gap junction or ion 

channel content, can also, in combination with patterning defects or alone, result in perturbed 

conduction84,104,105.  
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Figure 1: The anatomy, conduction properties and molecular regulation of the 
development of the CCS . On the left, the anatomy and conduction properties of the 
different components of the murine or human CCS. The conduction velocity within the heart 
depends on the specific expression of connexins in different components of the CCS. On the 
right, interactions of known factors controlling the development of the VCS through the 
regulation of proliferation, recruitment and differentiation of conductive cells. SAN, sinus 
node; AVN, Atrioventriclar node; AVB, Atrioventricular bundle; RBB, Right bundle branch; 
LBB, Left bundle branch; PFs, Purkinje fibers. 
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