Cyclotomy of Weil Sums of Binomials - Institut de Mathématiques de Marseille
Pré-Publication, Document De Travail Année : 2015

Cyclotomy of Weil Sums of Binomials

Résumé

The Weil sum $W_{K,d}(a)=\sum_{x \in K} \psi(x^d + a x)$ where $K$ is a finite field, $\psi$ is an additive character of $K$, $d$ is coprime to $|K^\times|$, and $a \in K^\times$ arises often in number-theoretic calculations, and in applications to finite geometry, cryptography, digital sequence design, and coding theory. Researchers are especially interested in the case where $W_{K,d}(a)$ assumes three distinct values as $a$ runs through $K^\times$. A Galois-theoretic approach is used here to prove a variety of new results that constrain which fields $K$ and exponents $d$ support three-valued Weil sums, and restrict the values that such Weil sums may assume.
Fichier principal
Vignette du fichier
1312.3889v7.pdf (241.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00978918 , version 1 (12-09-2024)

Identifiants

Citer

Yves Aubry, Daniel J. Katz, Philippe Langevin. Cyclotomy of Weil Sums of Binomials. 2014. ⟨hal-00978918⟩
240 Consultations
13 Téléchargements

Altmetric

Partager

More