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CYCLOTOMY OF WEIL SUMS OF BINOMIALS

YVES AUBRY, DANIEL J. KATZ, AND PHILIPPE LANGEVIN

Abstract. The Weil sum WK,d(a) =
∑

x∈K ψ(xd + ax) where K is a

finite field, ψ is an additive character of K, d is coprime to |K×|, and
a ∈ K× arises often in number-theoretic calculations, and in applications
to finite geometry, cryptography, digital sequence design, and coding
theory. Researchers are especially interested in the case where WK,d(a)
assumes three distinct values as a runs through K×. A Galois-theoretic
approach, combined with p-divisibility results on Gauss sums, is used
here to prove a variety of new results that constrain which fields K and
exponents d support three-valued Weil sums, and restrict the values that
such Weil sums may assume.

1. Introduction

LetK be a finite field of characteristic p. Let ψK be the canonical additive
character of K, that is, ψK(x) = exp(2iπTrK/Fp

(x)/p) where TrK/Fp
is the

absolute trace. Weil sums with ψK applied to binomials, that is, sums of
the form

∑
x∈K ψK(bxj + cxk), have been studied extensively from the early

twentieth century to present [32, 37, 41, 14, 1, 23, 6, 7, 33, 31, 11, 9, 10].
We are interested in such sums when j and k are coprime to |K×|, in which
case we reparameterize them to obtain sums of the form

(1) WK,d(a) =
∑

x∈K

ψK(xd + ax)

with gcd(d, |K×|) = 1 and a ∈ K. This definition will remain in force
throughout the paper, and we shall always insist that gcd(d, |K×|) = 1
whenever we write WK,d. The sums WK,d(a) are always real algebraic inte-
gers [20, Theorem 3.1(a)], and furthermore, are all rational integers if and
only if d ≡ 1 (mod p − 1) [20, Theorem 4.2]. Apart from arising often in
number-theoretic calculations, these sums are also the key to problems in
finite geometry, cryptography, digital sequence design, and coding theory,
as discussed in [27, Appendix].

For a fixed K and d, we consider WK,d(a) as a function of a ∈ K×, and
are interested in how many different values it assumes as a runs throughK×.
WK,d(a) with a = 0 is passed over, as it is the Weil sum of the monomial

xd, and since x 7→ xd is a permutation of K, we always have WK,d(0) = 0.
We call {WK,d(a) : a ∈ K×} the value set of WK,d, and say that WK,d is
v-valued over K to mean that this set is of cardinality v.
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If d ≡ pj (mod |K×|) for some j, we say that d is degenerate over K,
because TrK/Fp

(xd+ax) = TrK/Fp
((1+a)x), and so the binomial effectively

becomes zero (if a = −1) or a nonvanishing linear form (if a 6= −1). Thus if
d is degenerate over K, one readily obtains for a ∈ K that

(2) WK,d(a) =

{
|K| if a = −1,

0 otherwise.

Helleseth [20, Theorem 4.1] shows that one always obtains a richer value set
in the nondegenerate case.

Theorem 1.1 (Helleseth, 1976). If d is nondegenerate over K, then WK,d(a)
takes at least three values as a runs through K×.

Here we want to know when Weil sums of this form can be three-valued,
and if so, what are the three values they may take. We indicate all known
infinite families of three-valued examples, arranged according to analogy, in
Table 1 below.

Table 1. Three-Valued Weil Sums

order of K d (nondegenerate) values of WK,d reference

q = 2e
d = 2i + 1

0, ±
√
2gcd(e,i)q [24, 26, 18]

val2(i) ≥ val2(e)

q = pe d = 1
2 (p

2i + 1)
0, ±

√
pgcd(e,i)q

[40] (e odd)
p odd val2(i) ≥ val2(e) [19, 20] (e even)

q = 2e
d = 22i − 2i + 1,

0, ±
√
2gcd(e,i)q [42, 25]

val2(i) ≥ val2(e)
q = pe d = p2i − pi + 1

0, ±
√
pgcd(e,i)q

[40] (e odd)
p odd val2(i) ≥ val2(e) [19, 20] (e even)
q = 2e

d = 2e/2 + 2(e+2)/4 + 1 0, ±2
√
q [12]

val2(e) = 1
q = 2e

d = 2(e+2)/4 + 3 0, ±2
√
q [12]

val2(e) = 1
q = 2e

d = 2(e−1)/2 + 3 0, ±√
2q [4, 5, 21]

e odd
q = 3e

d = 2 · 3(e−1)/2 + 1 0, ±√
3q [15]

e odd
q = 2e d = 22i + 2i − 1

0, ±√
2q [21, 22]

e odd e | 4i+ 1
q = 3e d = 2 · 3i + 1

0, ±√
3q [30]

e odd e | 4i+ 1

In several entries, we make use of the p-adic valuation of an integer a, de-
noted valp(a), which is the maximum k such that pk | a (or ∞ if a = 0).
We write “nondegenerate” in the column heading for d values to impose the
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condition that d be nondegenerate over K throughout the table, so that, for
example, we cannot have i = 0 in the first four rows. If K has characteristic
p and 1/d is interpreted modulo |K×|, then WK,pd and WK,1/d take the
same values as WK,d [20, Theorem 3.1], so the table records representative
d modulo these equivalences.

First of all, note that all these value sets consist of three rational integers,
one of which is 0, with the other two being opposites of each other. The
first two properties are inevitable facts, as shown in [27, Theorems 1.7, 1.9].

Theorem 1.2 (Katz, 2012). Let K be a finite field of characteristic p. If

WK,d is three-valued for some exponent d, then d ≡ 1 (mod p− 1), and the

values must be rational integers, one of which is zero.

Concerning the two nonzero values of a three-valued Weil sum, one must
be positive and the other negative, since it is known that

∑
a∈K× WK,d(a)

2 =(∑
a∈K× WK,d(a)

)2
. (See Lemma 2.1 and Corollary 2.3 below for details.)

However, it has not been proved that these values must have the same
magnitude, although this is always what has been observed. We say that
a three-valued Weil sum WK,d is symmetric when the two nonzero values
are opposites of each other. If we assume that a three-valued Weil sum is
symmetric, we can make further conclusions about the possible values.

Proposition 1.3. If K is the finite field of characteristic p and order q, and
if WK,d(a) is three-valued with values 0 and ±A, then |A| = pk for some

positive integer k with
√
q < pk < q.

This follows easily from well-known facts, which are arranged in Section
2, where the above proposition is proved as Proposition 2.4.

Our first main result shows that in many cases, WK,d cannot be symmetric
three-valued.

Theorem 1.4. Let K be a finite field, and suppose that I and J are subfields

of K with [J : I] = 2, with d degenerate over I but not over J . Then the

set of values assumed by WK,d(a) as a runs through K× is not of the form

{−A, 0,+A} for any A.

We prove this in Section 6. This means that a field obtained by a tower
of quadratic extensions over a prime field can never support a symmetric
three-valued sum.

Corollary 1.5. Let K be a finite field of characteristic p, and suppose that

[K : Fp] is a power of 2. Then the set of values assumed by WK,d(a) as a
runs through K× is not of the form {−A, 0,+A} for any A.

For if WK,d were three-valued, Theorem 1.2 and eq. (2) would make d
degenerate over Fp but not over K, and then as we proceed from Fp toward
K up the tower of quadratic extensions, we must find a step where d passes
from degenerate to nondegenerate. This corollary generalizes a result of
Calderbank-McGuire-Poonen-Rubinstein [3, Theorem 3]. Our proof is quite
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different from that of Calderbank et al., who used McEliece’s Theorem from
coding theory (a relative of Stickelberger’s Theorem on the p-divisibility
of Gauss sums) and a delicate calculation in additive number theory to
obtain Corollary 1.5 in the case where p = 2. The proof for Theorem
1.4 in full generality given here is much more straightforward, and is the
consequence of some useful observations about the p-adic valuation of Weil
sums. These observations come as a consequence of relations (explored in
Section 4) between Weil and Gauss sums over a field and sums of the same
form over a subfield: the Gauss sums play a role since Weil sums can be
written in terms of Gauss sums, and the Davenport-Hasse relation supplies
the connection between Gauss sums over the field and Gauss sums over the
subfield.

Note that if K is a field of characteristic p and order q = pe, with e not
equal to a power of 2, then we can set i = 2val2(e) in the first four rows of
Table 1 to obtain a d such that Wq,d is three-valued. On the other hand,
Table 1 furnishes no example of a three-valuedWK,d with [K : Fp] a power of
2. (Recall that our table prohibits parameters which make d degenerate, so
we cannot have i a multiple of e in the first four rows.) Helleseth conjectured
[20, Conjecture 5.2] that for such fields there is no d that makes the Weil
sum WK,d three-valued.

Conjecture 1.6 (Helleseth, 1976). Let K be a finite field of characteristic

p. If [K : Fp] is a power of 2, then WK,d is not three-valued.

If it were proved that three-valued Weil sums must be symmetric, this
would follow from Corollary 1.5. The p = 2 and 3 cases of Conjecture 1.6
have been proved. First, Feng [16, Theorem 2] showed that if p = 2, one
could strengthen the conclusion of Corollary 1.5 to say that the value set
is not only non-symmetric, but entirely lacks the value 0. Then when Katz
[27, Theorem 1.9] proved that a three-valued Weil sum must take the value
0, Conjecture 1.6 was established for p = 2. Further work of Katz [28,
Theorem 1.7] shows that Conjecture 1.6 is also true when p = 3.

A symmetric three-valued Weil sum is called preferred if the magnitude
of the nonzero values is as small as possible in view of Proposition 1.3, that
is, if the nonzero values are ±√

pq when q is an odd power of p, or if the
nonzero values are ±p√q when q is an even power of p. This terminology
originates from digital sequence design, wherein smaller magnitude Weil
sums of binomials correspond to smaller cross-correlation between a pair of
maximal linear recursive sequences, which is desirable. The known infinite
families of preferred three-valued Weil sums can be deduced from Table 1
above: the last seven rows furnish preferred Weil sums, and in the first four
rows, one must have gcd(e, i) = 1 if e is odd, or gcd(e, i) = 2 if e is even.

Our second main result is a lower bound on the magnitude of the nonzero
values of a symmetric three-valued Weil sum WK,d. This bound grows as
the 2-divisibility of the degree of K over its prime field increases.
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Theorem 1.7. Let K be the finite field of characteristic p and order q. If

val2([K : Fp]) = s and WK,d is symmetric three-valued with values 0,±A,
then |A| ≥ p2

s−1√
q.

We prove this in Section 7. One consequence is that if the degree of K
over its prime field is a multiple of 4, then WK,d cannot be preferred.

Corollary 1.8. Let K be the finite field of characteristic p and order q. If

[K : Fp] ≡ 0 (mod 4), then the set of values assumed by WK,d as a runs

through K× is not of the form {0,±p√q}.
This generalizes the result of Calderbank-McGuire [2], who proved a con-

jecture of Sarwate and Pursley [39, p. 603], which is the special case of
Corollary 1.8 where p = 2. Our proof technique for Theorem 1.7 in full
generality is much simpler than the original proof of Calderbank-McGuire,
as it obviates the need for McEliece’s Theorem or Stickelberger’s Theorem.

Our first two results give restrictions on the types of fields that support
symmetric and preferred Weil sums. Our third result shows that certain
exponents d of the polynomial in the Weil sum prevent the Weil sum from
being three-valued at all.

Theorem 1.9. Let K be a finite field of characteristic p with [K : Fp] even.

If d is a power of p modulo
√

|K| − 1, then WK,d is not three-valued.

In other words, it is impossible for WK,d to be three-valued if K is the
quadratic extension of a field F in which d is degenerate. We prove this in
Section 8. Such an exponent d is called a Niho exponent, since they were
first studied by Niho in [38]. Theorem 1.9 generalizes the result of Charpin
[8, Theorem 2], who proved the p = 2 case. Some steps of Charpin’s proof
for characteristic two do not hold in odd characteristic, so new arguments
are devised.

Finally, the techniques developed here can be used to simplify the proof
that the values of a three-valued Weil sum must be rational integers, a result
that appears above in Theorem 1.2, and which originally appeared in [27,
Theorem 1.7]. The new proof is presented in Section 9.

Our proofs of all the above results make extensive use of Galois theory.
Since Weil sums connect calculations in finite fields to calculations in cyclo-
tomic extensions of Q, there are two realms, both cyclotomic, where Galois
groups come into play. On the one hand, there are Galois groups for finite
fields, which act on the terms of the polynomial arguments of the characters
in the Weil sums; this is explored in Section 3. On the other hand, there are
Galois groups for cyclotomic fields, which are applied to the values of the
Weil sums; this is explored in Section 5. This dual Galois-theoretic approach
has proved to be both powerful for obtaining new results, and at the same
time, simplifies the proofs of previous results that we recapitulate.

We should note that Weil sums assuming four, five, or more values are
also studied (see [20, Theorems 2.2, 2.3, 4.8, 4.10, 4.11, 4.13] for some ex-
amples), but we focus on the three-valued ones, as they are extremal in
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view of Theorem 1.1. It has been asked [29, Problem 3.6] whether there is
an analogue of Theorem 1.2 for four-valued Weil sums. Four-valued Weil
sums WK,d(a) are known that assume irrational values and do not assume
the value 0 for a ∈ K×. For example, if K is the field with 5 elements
and d = 3, then WK,d(a) assumes four distinct irrational values (±

√
5 and

(5±
√
5)/2) as a runs through K×. Thus any analogue of Theorem 1.2 for

four-valued sums would need to be significantly different from the original.
The organization of this paper is as follows: in Section 2, we prove some

preliminary results using the well-known methodology of power moments.
In Section 3, we explore the action of the Galois groups of finite fields on the
terms inside the Weil sums. In Section 4, we look at the Fourier transform of
the value set of our Weil sums, which is expressible in terms of Gauss sums,
from which we deduce results about the p-adic valuation of Weil sum values.
In Section 5, we explore the action of the Galois groups of cyclotomic fields
on the values of the Weil sums. In Sections 6, 7, and 8, we prove Theorems
1.4, 1.7, and 1.9, respectively. In Section 9, we finish with our new simpler
proof of the rationality of the values of three-valued Weil sums.

2. Power Moments of Weil Sums

In this section we state some of the basic results about Weil sums that will
be useful later on. These facts are proved using character sums known as
power moments. Recall the definition (1) of WK,d, and our tacit insistence
that gcd(d, |K×|) = 1 whenever we write WK,d. The mth power moment of
the Weil sum WK,d is the sum

∑

a∈K×

WK,d(a)
m.

The first few power moments can be calculated as straightforward character
sums.

Lemma 2.1. Let K be a finite field. Then

(i).
∑

a∈K× WK,d(a) = |K|,
(ii).

∑
a∈K× WK,d(a)

2 = |K|2, and
(iii).

∑
a∈K× WK,d(a)

3 = |K|2 · |R|,
where R is the set of roots of the polynomial (x+ 1)d − xd − 1 in K.

Proof. See [27, Proposition 3.1]. �

Corollary 2.2. If K is a finite field, and d is nondegenerate over K, then

|WK,d(a)| < |K| for all a ∈ K×.

Proof. From Lemma 2.1(ii), the only way to escape this conclusion would be
to have |WK,d(b)| = |K| for some b ∈ K×, and WK,d(a) = 0 for all other a,
which would make the Weil sum two-valued, contrary to Theorem 1.1. �

Corollary 2.3. If d is nondegenerate over K, then WK,d assumes at least

one positive value and at least one negative value.
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Proof. Recall that the Weil sum values are real algebraic integers [20, Theo-
rem 3.1(a)]. By Theorem 1.1, we know that WK,d must assume at least two
nonzero values. If all the nonzero values it assumes were of the same sign,

then
(∑

a∈K× WK,d(a)
)2

>
∑

a∈K× WK,d(a)
2, contradicting Lemma 2.1(i)

and (ii). �

The following is an easy consequence of this power moment analysis, and
provides the proof of Proposition 1.3 in the Introduction.

Proposition 2.4. If K is the finite field of characteristic p and order q, and
if WK,d(a) is three-valued with values 0 and ±A, then d ≡ 1 (mod p − 1)

and |A| = pk for some positive integer k. If R denotes the set of roots of

(x+ 1)d − xd − 1 in K, then
√
q <

√
|R| q = |A| < q.

Proof. By Theorem 1.2, we must have A ∈ Z and d ≡ 1 (mod p − 1). Let
NA be the number of a ∈ K× with WK,d(a) = A. Since the other two values
WK,d(a) assumes are 0 and −A, we have

∑
a∈K× WK,d(a)(WK,d(a) +A) =

2A2NA, and by Lemma 2.1(i),(ii), this sum also equals q2 + qA, so that
NA = (q2 + qA)/(2A2), and so A can not be divisible by any prime other
than p. We know |A| < q by Corollary 2.2.

Similarly,
∑

a∈K× WK,d(a)(WK,d(a)
2−A2) = 0, and by Lemma 2.1(i),(iii)

equals q2 |R| − qA2, so |A| =
√

|R| q. Then note that 0,−1 ∈ R. (This is
clear for p = 2, and for p odd, note that gcd(d, q − 1) = 1 forces d to be
odd.) Thus A ≥ √

2q. �

It will also be useful to consider a version of the first power moment of a
Weil sum, but where we restrict the summation to a smaller subfield.

Lemma 2.5. Let K be a finite field and let L be the quadratic extension of

K. Then ∑

a∈K×

WL,d(a) = |L| .

Proof. Let q = |K|. Since WL,d(0) = 0, we have
∑

a∈K×

WL,d(a) =
∑

x∈L

ψL(x
d)

∑

a∈K

ψK(aTrL/K(x))

= q
∑

x∈L
TrL/K(x)=0

ψL(x
d).

If x ∈ L with TrL/K(x) = 0, then xq = −x, so that TrL/K(xd) = xqd + xd =

(−x)d + xd = 0. (In odd characteristic, gcd(d, q − 1) = 1 makes d odd.)
Thus

∑
a∈K× WL,d(a) = q ·

∣∣{x ∈ L : TrL/K(x) = 0}
∣∣ = q2 = |L|. �

3. Action of Galois Groups of Finite Fields

We begin this section by seeing that the automorphisms of a finite field
K act trivially with respect to the Weil sum WK,d(a). As always WK,d(a)
is as defined in (1), and gcd(d, |K×|) = 1 whenever we write WK,d.
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Lemma 3.1. Let K be a finite field of characteristic p. If σ ∈ Gal(K/Fp),
then WK,d(σ(a)) = WK,d(a).

Proof. Since Galois conjugates have the same trace, they have the same
character value. Thus WK,d(a) =

∑
x∈K ψK(σ(xd + ax)), and by repa-

rameterizing with y = σ(x), we have WK,d(a) =
∑

y∈K ψK(yd + σ(a)y) =

WK,d(σ(a)). �

The action of the Galois group also shows that some exponents give equiv-
alent Weil sums.

Lemma 3.2. Let K be a finite field of characteristic p. Then WK,d(a) =
WK,pjd(a) for any a ∈ K and j ∈ Z.

Proof. This follows immediately from the fact that xp
jd is a Galois conjugate

of xd, and so ψK(xp
jd) = ψK(xd). �

Now we use finite field automorphisms to prove a congruence between the
Weil sum over a field and the Weil sum over its extensions.

Lemma 3.3. Let K be a finite field of characteristic p, and let L be an

extension of K with [L : K] a power of a prime ℓ distinct from p. Then for

any a ∈ K, we have

WL,d(a) ≡ WK,d([L : K]1−1/da) (mod ℓ),

where 1/d indicates the multiplicative inverse of d modulo p− 1.

Proof. For a ∈ K, we have

WL,d(a) =
∑

x∈K

ψK(TrL/K(xd + ax)) +
∑

x∈LrK

ψL(x
d + ax).

The first sum equals
∑

x∈K ψK([L : K](xd + ax)), and if we reparameterize

with w = [L : K]1/dx, then we see that this sum is WK,d([L : K]1−1/da). For
the second sum, the action of Gal(L/K) partitions LrK into orbits of Galois
conjugates whose sizes are positive powers of ℓ. For any σ ∈ Gal(L/K), we
have ψL(x

d + ax) = ψL(σ(x
d + ax)) = ψL(σ(x)

d + aσ(x)), so that the value
of ψL(x

d+ax) is constant on orbits, and thus the sum over LrK is ℓ times
a sum of algebraic integers. �

We then explore what this tells us in the case where d is degenerate in
the smaller field.

Corollary 3.4. Let K be a finite field of characteristic p, and let L be an

extension of L with [L : K] a power of a prime ℓ distinct from p. Let d
be degenerate over K. Then WL,d(−1) ≡ |K| (mod ℓ) and WL,d(a) ≡ 0
(mod ℓ) for every a ∈ K r {−1}.
Proof. Combine Lemma 3.3 with (2), and note that since d is degenerate

over K, we have d ≡ 1 (mod p− 1), so the factor of [K : L]1−1/d mentioned
in Lemma 3.3 is equal to 1. �
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4. Gauss Sum and Valuation

In this section, we explore the Fourier transform of the value set of the
Weil sum, which is expressible in terms of Gauss sums. This will enable us
to prove some criteria about the p-divisibility of Weil sum values.

Throughout this section K is a finite field of characteristic p and order
q and, as always, we assume that gcd(d, q − 1) = 1. For any multiplicative

character χ ∈ K̂×, we consider the Gauss sum

τK(χ) =
∑

a∈K×

χ(a)ψK(a).

By Fourier inversion, if a ∈ K×, we find that

ψK(a) =
1

q − 1

∑

χ∈K̂×

τK(χ)χ̄(a).

Thus for a ∈ K×,

WK,d(a) = 1 +
1

(q − 1)2

∑

b∈K×

∑

χ,ϕ∈K̂×

τK(χ)τK(ϕ)χ̄d(b)ϕ̄(ab)(3)

= 1 +
1

q − 1

∑

χ,ϕ∈K̂×

ϕ=χ̄d

τK(χ)τK(ϕ)ϕ̄(a)

=
q

q − 1
+

1

q − 1

∑

χ 6=1

τK(χ)τK(χ̄d)χd(a).

If we denote by t the inverse of −d modulo q − 1, the above formula shows
that q and the τK(χ)τK(χ̄d) are the Fourier coefficients of the mapping
a 7→ WK,d(a

t) from K× to C, whence by Fourier inversion

(4)
∑

a∈K×

WK,d(a
t)χ(a) =

{
q if χ = 1,

τK(χ)τK(χ̄d) otherwise.

Recall from the Introduction that for any nonzero integer n, the p-adic
valuation of n, written valp(n), is the largest k such that pk divides n,
and we set valp(0) = ∞. Then valp(ab) = valp(a) + valp(b) and valp(a +
b) ≥ min{valp(a), valp(b)}, which becomes an equality whenever valp(a) 6=
valp(b). We can extend the definition to Q, wherein valp(a/b) = valp(a) −
valp(b). If ζp and ζq−1 are, respectively, primitive pth and (q − 1)th roots
of unity over Q, we can further extend valp to the field Q(ζp, ζq−1) where
the Gauss sums reside, while still retaining the relations given above con-
cerning products and sums of elements. In this last field, elements can have
fractional valuations: for instance valp(1− ζp) = 1/(p − 1).

We introduce the useful notation

VK,d = min
a∈K×

valp(WK,d(a)).
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It is well known [35], [36, Section 6] that Stickelberger’s congruence on Gauss
sums can be used to obtain the value of VK,d but we do not need it to reach
our goal.

Lemma 4.1. For K a finite field of order q, and d an integer coprime to

q − 1, we have

VK,d = min
χ∈K̂×

χ 6=1

valp(τK(χ)τK(χ̄d)).

Proof. This is straightforward once we note that valp(χ(a)) = 0 for any χ ∈
K̂× and any a ∈ K×, because (q−1)valp(χ(a)) = valp(χ(a)

q−1) = valp(1) =

0. Using the relation (3), one has VK,d ≥ minχ 6=1 valp(τK(χ)τK(χ̄d)), and
the reverse inequality is obtained by using the relation (4), once we establish
that minχ 6=1 valp(τK(χ)τK(χ̄d)) ≤ valp(q). This last fact follows because

τK(χ̄) = χ(−1)τK(χ) and |τK(χ)|2 = q for any nontrivial multiplicative
character χ, and so

∏
χ 6=1 τK(χ)τK(χ̄d) = ±qq−2. �

Corollary 4.2. Let L be a finite extension of K. For a positive integer d,

VL,d ≤ [L : K]×VK,d

Proof. Denoting by NL/K the norm from L over K, the Davenport-Hasse

relation (see [13]) tells us that if χ ∈ K̂×, we have

−τL(χ ◦NL/K) = (−τK(χ))[L:K],

and the set of lifted characters χ ◦ NL/K as χ runs through the nontrivial

elements of K̂× is a subset of the nontrivial elements of L̂×. �

The remaining results in this section are specific to quadratic extensions
of finite fields, which are involved in our three main results (Theorems 1.4,
1.7, and 1.9).

Lemma 4.3. Let K be a finite field, and let L be the quadratic extension

of K. Let d be degenerate over K, but not over L. Let Y be a set of

representatives of cosets of K× in L×. Then for a ∈ L, we have

WL,d(a) = |K| (Z(a)− 1),

where Z(a) is the number of y ∈ Y such that TrL/K(yd + ay) = 0.

Proof. If K has characteristic p, then Lemma 3.2 allows us to replace d with
pjd for any j, so we may take d ≡ 1 (mod |K×|) without loss of generality.
Then

WL,d(a) = 1 +
∑

y∈Y

∑

x∈K×

ψL((y
d + ay)x)

= − |K|+
∑

y∈Y

∑

x∈K

ψK(xTrL/K(yd + ay)),

since |Y | = (|L| − 1)/(|K| − 1) = |K| + 1. The sum over x is |K| when
TrL/K(yd + ay) = 0; otherwise the sum is 0. �
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This calculation has immediate consequences for the p-adic valuation of
Weil sum values.

Corollary 4.4. Let K be a finite field of characteristic p, and let L be the

quadratic extension of K. Let d be degenerate over K, but not over L. Then

VL,d = [K : Fp],

and furthermore, WL,d(a) = −|K| for some a ∈ L×.

Proof. Let Y and Z(a) be as defined in Lemma 4.3, which tells us that

WL,d(a) = |K| (Z(a)− 1),

for each a ∈ L. All these numbers have a valuation greater or equal to
[K : Fp]. Since d is not degenerate over L, WL,d(a) must be negative for
some a ∈ L× by Corollary 2.3. The only way to make WL,d(a) negative is
to have Z(a) = 0, which makes WL,d(a) = − |K|, and then the valuation of
WL,d(a) is precisely [K : Fp]. �

The calculation of Lemma 4.3 also gives a nonnegativity condition that
will be useful in our proof of Theorem 1.9.

Corollary 4.5. Let K be a finite field, and let L be the quadratic extension

of K. Let d be degenerate over K. Then WL,d(a) ≥ 0 for all a ∈ K.

Proof. We may take d nondegenerate over L, since (2) settles the degenerate
case. Let a ∈ K. By Lemma 4.3, it suffices to find some y ∈ L× such that
TrL/K(yd + ay) = 1. In characteristic 2, take y ∈ K×, so that TrL/K(yd +

ay) = 2(yd + ay) = 0. In odd characteristic, take y ∈ L with y2 ∈ K but
y 6∈ K. Then y and −y are conjugates under the action of Gal(L/K), and
so TrL/K(yd + ay) = (−y)d + a(−y) + yd + ay = 0. �

5. Action of Galois Groups of Cyclotomic Fields

Throughout this section, ζp denotes a primitive pth root of unity over Q.
If K is a field of characteristic p, then the Weil sum values WK,d(a) reside
in Q(ζp) by definition (1). First we see how Galois automorphisms permute
the Weil sum values. Recall that we always have d invertible modulo |K×|
whenever we write the sum WK,d.

Lemma 5.1. Let K be a finite field of characteristic p. If σ is the element of

Gal(Q(ζp)/Q) with σ(ζp) = ζjp, then σ(WK,d(a)) = WK,d(j
1−(1/d)a), where

1/d indicates the multiplicative inverse of d modulo p− 1.

Proof. This is [27, Theorem 2.1(b)]. �

This shows that if two Weil sum values are Galois conjugates over Q, then
they occur equally often.



12 YVES AUBRY, DANIEL J. KATZ, AND PHILIPPE LANGEVIN

Corollary 5.2. Let K be a finite field, and let A and B be values assumed

by WK,d. If A and B are Galois conjugates over Q, then the number of

a ∈ K× such that WK,d(a) = A is equal to the number of a ∈ K× such that

WK,d(a) = B.

Proof. Let σ ∈ Gal(Q(ζp)/Q) with σ(A) = B, and let j ∈ F×
p such that

σ(ζp) = ζjp. By Lemma 5.1, WK,d(a) = A precisely when WK,d(j
1−1/da) =

B. �

Often the Weil sums lie in a proper subfield of Q(ζp). We give a criterion
for determining when this happens.

Lemma 5.3. Let K be a finite field of characteristic p. Let E be the exten-

sion of Q generated by all the values of WK,d(a) for a ∈ K×. Let m be the

smallest divisor of p − 1 such that d ≡ 1 (mod (p − 1)/m). Then E is the

unique subfield of Q(ζp) with [E : Q] = m.

Proof. An arbitrary σ ∈ Gal(Q(ζp)/Q) takes ζp to ζjp for some j ∈ F×
p . So

by Lemma 5.1, we have

(5) σn(WK,d(a)) = WK,d(j
n(1−1/d)a)

for any a ∈ K× and n ∈ Z.
Since d ≡ 1 (mod (p − 1)/m), we see that jm(1−1/d) = 1 for any j ∈ F×

p .
Thus if σ ∈ Gal(Q(ζp)/Q), then σm fixes all the values of WK,d. So the
subgroup of index m in Gal(Q(ζp)/Q) fixes all values in E, and so [E : Q]
is a divisor of m.

Conversely, if we set n = [E : Q] and Fourier transform both sides of (5)

with a multiplicative character χ ∈ K̂×, we obtain
∑

a∈K×

WK,d(a)χ(a) =
∑

a∈K×

WK,d(j
n(1−1/d)a)χ(a).

The right hand side is χ̄(jn(1−1/d)) times the left hand side. The left hand
side is nonzero, since it is either q if χ is principal, or a product of Gauss
sums involving nontrivial characters (use (4) with χt in place of χ, where
t is the inverse of −d modulo q − 1). Thus we must have χ(jn(1−1/d)) = 1

for all j ∈ F×
p and all χ ∈ K̂×, which forces d ≡ 1 (mod (p− 1)/n). By the

minimality of m, this means that [E : Q] = n ≥ m. �

Remark 5.4. Values of WK,d are always algebraic integers, so that if these
lie in a field E, they actually lie in the ring of algebraic integers in E.

Remark 5.5. In view of the previous remark, the special case of Lemma
5.3 when m = 1 states that the values of WK,d(a) for a ∈ K× all lie in Z if
and only if d ≡ 1 (mod p− 1). This was proved in [20, Theorem 4.2].

The next result is reminiscent of the power moments of Section 2. We
shall combine it with Lemma 5.1 in Corollary 5.7 below.
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Lemma 5.6. Let K be a finite field. For any b ∈ K with b 6= 1, we have

∑

a∈K×

WK,d(a)WK,d(ba) = 0.

Proof. Since WK,d(0) = 0, we may include the a = 0 term in

∑

a∈K×

WK,d(a)WK,d(ba) =
∑

x,y∈K

ψK(xd + yd)
∑

a∈K

ψK(a(x+ by))

= |K|
∑

x,y∈K
x+by=0

ψK(xd + yd)

= |K|
∑

y∈K

ψK(yd(1 + (−b)d)),

which vanishes because y 7→ yd is a permutation of K, and 1 + (−b)d 6= 0
since b 6= 1. �

Now we combine Lemmata 5.1 and 5.6.

Corollary 5.7. If K is a finite field and σ ∈ Gal(Q(ζp)/Q) permutes the

values of WK,d nontrivially, then

∑

a∈K×

WK,d(a)σ(WK,d(a)) = 0.

Proof. Lemma 5.1 furnishes an element b such that σ(WK,d(a)) = WK,d(ba)
for all a ∈ K×, and clearly b 6= 1, for otherwise σ would fix each value taken
by WK,d. Lemma 5.6 finishes the proof. �

6. Proof of Theorem 1.4

We have three fields I ⊆ J ⊆ K with [J : I] = 2. Let p be the charac-
teristic of our fields. As always, gcd(d, |K×|) = 1. We are given that d is
degenerate in I, but not in J .

We want to show that the value set of WK,d is not of the form {0,±A}.
Suppose the contrary. By Proposition 2.4, |A| must be an integral power of

p with
√

|K| < |A| < |K|, so then

VK,d = valp(A)

> valp(
√

|K|)

=
1

2
[K : Fp].



14 YVES AUBRY, DANIEL J. KATZ, AND PHILIPPE LANGEVIN

On the other hand, by Corollary 4.2 and Corollary 4.4, we get a contradiction
because

VK,d ≤ [K : J ]×VJ,d

= [K : J ]× [I : Fp]

=
1

2
[K : Fp].

7. Proof of Theorem 1.7

We have K a finite field of characteristic p and order q with [K : Fp]
divisible by 2s. As always, gcd(d, q − 1) = 1. We suppose that WK,d is
symmetric three-valued with values 0 and ±A, and our goal is to show that

|A| ≥ p2
s−1√

q.
Note that Fp2s ⊆ K. Since WK,d is three-valued, d is degenerate over

Fp by Theorem 1.2. If d were nondegenerate over Fp2s , then there must be
subfields I and J of Fp2s with [J : I] = 2 and d degenerate over I but not
over J . Then Theorem 1.4 tells us that WK,d is not symmetric three-valued,
contrary to our hypothesis.

So d is degenerate over Fp2s , and thus every point of Fp2s is an element

of the set R of roots of (x+1)d −xd− 1. Thus |R| ≥ p2
s
, so Proposition 2.4

tells us that |A| =
√
|R| q ≥ p2

s−1√
q.

8. Proof of Theorem 1.9

We have L a finite field with [L : Fp] even, and d is a power of p modulo√
|L| − 1. We want to show that WL,d is not three-valued.
Since we are considering WL,d, the exponent d is an invertible element

modulo |L|. If d is degenerate over L, then WL,d is at most two-valued by
(2), so we assume that d is nondegenerate over L henceforth. The proof
that WL,d is not three-valued when L is of characteristic 2 is given as [8,
Theorem 2], so we assume that we are in odd characteristic henceforth.

Assume WL,d is three-valued to show a contradiction. By Theorem 1.2
and Corollary 2.3, these three values are all in Z, one of them is 0, one is
positive, and one is negative. Let K be the subfield of L with [L : K] = 2.
Then by Corollary 4.5, we know that WL,d(a) ≥ 0 for all a ∈ K. Corollary
3.4 shows that WL,d(−1) is odd, and that WL,d(a) is even for all other
a ∈ K. Since these are nonnegative, the positive value of WL,d must be
WL,d(−1), and WL,d(a) = 0 for all other a ∈ K. But Lemma 2.5 tells us
that

∑
a∈K× WL,d(a) = |L|, which forces WL,d(−1) = |L|. This contradicts

Corollary 2.2, since WL,d was assumed to be nondegenerate over L.

9. New Proof of the Rationality of Three-Valued Weil Sums

We suppose that WK,d is three-valued, and we want to show that those
three values lie in Z. As for the rest of Theorem 1.2, the conclusion that
d ≡ 1 (mod p − 1) will then follow immediately from Remark 5.5, and the
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proof that one of the three values is 0 is given in [27, Theorem 5.2], which
is not very difficult to follow. The proof of rationality given here, while
complex, is considerably easier than the original, given as [27, Theorem
4.1].

Let p and q be respectively the characteristic and order of K, and so
gcd(d, q−1) = 1. Let ζp be a primitive pth root of unity over Q. Let WK,d(a)
take the three distinct values A, B, and C, respectively, for NA, NB , and NC

values of a ∈ K×. By Lemma 5.1, the Galois group Gal(Q(ζp)/Q) permutes
A, B, and C. The field Q(A,B,C) is a cyclic Galois extension of Q since
it is contained in the cyclic extension Q(ζp) of Q. Let σ be a generator of
Gal(Q(A,B,C)/Q). There are three possible actions of σ upon {A,B,C}:
(i) σ is the identity permutation, (ii) σ acts transitively, or (iii) σ permutes
a pair of these elements, and fixes the third. As A, B, and C are algebraic
integers, they lie in Z if and only if they lie in Q, and this occurs precisely
in Case (i). So it suffices to show that Cases (ii) and (iii) are impossible.

In Case (ii), Corollary 5.2 tells us that NA = NB = NC , so they all equal
(q− 1)/3. Then Lemma 2.1(i) shows that NAA+NBB+NCC = q, so that
A+B+C = 3+ 3

q−1 . As A+B+C is fixed by σ, it lies in Q, and is at the

same time an algebraic integer, so it lies in Z. This means that q − 1 | 3,
which forces p = 2, in which case ζp = −1, and so the values of WK,d lie
in Z, contradicting our supposition that σ permutes them nontrivially. So
Case (ii) is impossible.

Henceforth, we suppose that we are in Case (iii). Without loss of gener-
ality, we suppose that the generator σ of Gal(Q(A,B,C)/Q) has σ(A) = B,
σ(B) = A, and σ(C) = C. Then σ is of order 2, and so Q(A,B,C) is a
quadratic extension of Q lying in Q(ζp). There is no such thing if p = 2
(since ζp = −1, so Q(ζp) = Q). Otherwise, since Q(ζp) is cyclic of degree
p− 1 over Q, this means that Q(A,B,C) is the unique quadratic extension
of Q contained in Q(ζp). In view of the values of the quadratic Gauss sums
[17], we know that this unique quadratic extension must be Q(

√
p) if p ≡ 1

(mod 4), or Q(
√−p) if p ≡ 3 (mod 4). But since A, B, and C are real (see

[20, Theorem 3.1(a)] or [27, Theorem 2.1(c)]), the latter case is impossible,
so we must have p ≡ 1 (mod 4) and Q(A,B,C) = Q(

√
p). Then C ∈ Z,

since it is an algebraic integer fixed by σ, and A = a+b
√
p and B = a−b√p,

for some a, b with 2a, 2b, and a + b ∈ Z, since this is the form of algebraic
integers in Q(

√
p), as shown in [34, Chapter IV, Theorem 2.3].

Then Lemma 2.1(i),(ii) tells us that

NAA+NBB +NCC = q,(6)

NAA
2 +NBB

2 +NCC
2 = q2.(7)

Also
∑

a∈K× WK,d(a)σ(WK,d(a)) = 0 by Corollary 5.7, so

(8) NAAB +NBBA+NCC
2 = 0.
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By Corollary 5.2, we haveNA = NB , and since A = a+b
√
p and B = a−b√p,

our three equations (6), (7), and (8) become

2NAa+NCC = q,

2NA(a
2 + pb2) +NCC

2 = q2,

2NA(a
2 − pb2) +NCC

2 = 0,

and this system is equivalent to the system

2NAa+NCC = q,(9)

4NAa
2 + 2NCC

2 = q2,(10)

4NApb
2 = q2.(11)

From (11) we see that p | NA. Note that C 6= 0, since otherwise (9) and (10)
imply that NA = 1, contradicting p | NA. If we subtract (10) from 2(a+C)
times equation (9), we obtain

2(2NA +NC)aC = q(2a+ 2C − q),

and since NA +NB +NC = q − 1, with NA = NB, this gives

2(q − 1)aC = q(2a+ 2C − q).

Examine the p-adic valuation of each side of this equation to see that
max{valp(a), valp(C)} ≥ valp(q). Then by Corollary 2.2, we see that |C| < q,
and since C 6= 0, we must have valp(C) < valp(q) ≤ valp(a), so that q | 2a.
If we reduce (9) modulo q, we see that q | NCC, but since q ∤ C, we have
p | NC . Thus p | NA and p | NC , and so p | (2NA + NC) = q − 1, which is
absurd. Thus Case (iii) is impossible, and the proof is complete.
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[36] P. Langevin and P. Véron. On the non-linearity of power functions. Des. Codes Cryp-
togr., 37(1):31–43, 2005.

[37] L. J. Mordell. On a sum analogous to a Gauss sum. Quart. J. Math., 3:161–167, 1932.
[38] Y. Niho. Multi-valued cross-correlation function between two maximal linear recursive

sequences. PhD thesis, University of Southern California, Los Angeles, 1972.
[39] D. V. Sarwate and M. B. Pursley. Crosscorrelation properties of pseudorandom and

related sequences. IEEE Trans. Inform. Theory, 68(5):593–619, 1980. Correction in
IEEE Trans. Inform. Theory 68(12):1554, 1980.

[40] H. M. Trachtenberg. On the cross-correlation functions of maximal linear sequences.
PhD thesis, University of Southern California, Los Angeles, 1970.

[41] I. Vinogradow. Some trigonometrical polynomes and their applications. C. R. Acad.
Sci. URSS (N.S.), (6):254–255, 1933.

[42] L. R. Welch. Trace mappings in finite fields and shift register cross-correlation proper-
ties. Technical report, Dept. Electrical Engineering, University of Southern California,
Los Angeles, 1969.
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