A physics-guided recurrent machine learning model for long-time prediction of nonlinear partial differential equation - Proceedings of the 8th edition of the International Workshop on Numerical Modelling of High Temperature Superconductors
Conference Papers Year : 2022

A physics-guided recurrent machine learning model for long-time prediction of nonlinear partial differential equation

Fichier principal
Vignette du fichier
Conference_Abstract_HTS2022.pdf (279.24 Ko) Télécharger le fichier
8_Frederic_Sirois.pdf (1.64 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Format Poster

Dates and versions

hal-03791287 , version 1 (29-09-2022)

Identifiers

  • HAL Id : hal-03791287 , version 1

Cite

Jean-Hughes Fournier Lupien, Frédéric Sirois, Christian Lacroix. A physics-guided recurrent machine learning model for long-time prediction of nonlinear partial differential equation. 8th International Workshop on Numerical Modelling of High Temperature Superconductors (HTS 2022), Kévin Berger (Université de Lorraine - GREEN), Jun 2022, Nancy, France. ⟨hal-03791287⟩

Collections

HTS2022
38 View
81 Download

Share

More