

8th International Workshop on Numerical Modelling of High Temperature Superconductors 14th-16th June 2022, Nancy, France

A physics-guided recurrent data-driven model for long-time prediction of nonlinear partial differential equations

J.-H. Fournier-Lupien, **F. Sirois**, C. Lacroix (Collaborators from NRC: J. Valdes and A. Chagang)

Polytechnique Montréal, Montréal, Canada June 14th 2022

Numerical simulation of quench in HTS tapes

NZPV = Normal zone propagation velocity

- Electro-thermal simulation
- Nonlinear E-J characteristic
- Full 3D mesh

Problem with finite element simulations:

- Computationally expensive
- Impossible to simulate tape > few cm
- Need to variations of I_c along tape length, i.e. I_c = f(x)

Surrogate model to substitute an expensive FEM solver

3

Physics modeling versus Data-Driven modeling

Physics and things to take into account with ML model

Problem to solve:

Challenges:

- 1) Nonlinear electric and heat equations
- 2) Multi-materials geometry
- Time dependence must be solved one step at a time in a recursive manner

Decoupling of the electric and the thermal problems

 f_E : Electric problem f_T : Thermal problem

The problem can be reduced to finding a good model for f_T

Training of the electric problem

- Fitted on 3D simulations of quench propagation
- NN architecture: [4,10,1]
- 40 simulations
- 360,000 datapoints

Training of the thermal problem

Physics-Guided Recurrent Data-Driven model (PGRDD)

8

Training for the thermal problem

Physics-Guided Recurrent Data-Driven model (PGRDD)

Training on recurrent predictions

Material properties = Neural Networks (NN)

- Data-driven model with physical constraints (finite difference scheme built-in) trained on recursive predictions
- \rightarrow Physics guided recurrent data-driven model

Data set used to train the thermal problem

Nonlinear 1-D heat equation solved by FEM:

$$C(T)\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left[k(T)\frac{\partial T}{\partial x} \right] + Q(x,t) - S/V \cdot h(T - T_0) \cdot (T - T_0)$$

$$Q(x,t) = e^{t/T} \cdot \left[Q_1 e^{-\left(\frac{x - x_1}{2\sigma_1}\right)^2} + Q_2 e^{-\left(\frac{x - x_2}{2\sigma_2}\right)^2} \right]$$

*Randomly generated parameters

Data set: - 100 Simulations - 1,000,000 datapoints - 5 predictors, 1 target

Accurate predictions for different level of complexity

11

J.-H. Fournier-Lupien et al. – 8th International Workshop on Numerical Modelling HTS, Nancy, June 14th 2022

Minimization of the error accumulation

- Minimization of error accumulation
- Accurate long-time predictions
- General for any initial states and heat sources
- Prediction takes ~1.6 seconds
 (whereas a single 3-D simulations takes 25 minutes!)

***RMSE:** error compared to FEM solution

Generalization of the model to 3D effects

J.-H. Fournier-Lupien et al. – 8th International Workshop on Numerical Modelling HTS, Nancy, June 14th 2022

World-Class Engineering

Material properties can be extracted from data

J.-H. Fournier-Lupien et al. – 8th International Workshop on Numerical Modelling HTS, Nancy, June 14th 2022

14

Conclusion

- Data-driven modeling is promising to develop surrogate models for 3-D quench propagation simulations in HTS tapes
- It minimizes error accumulation caused by the recurrence of the scheme
- Surrogate model: general for any initial state and heat source (no need for re-training)
- 3D simulations takes ~25 min Surrogate model takes ~1.6 second (~75 min training)

