Parameter-Free Bayesian Decision Trees for Uplift Modeling - GREYC codag
Communication Dans Un Congrès Année : 2023

Parameter-Free Bayesian Decision Trees for Uplift Modeling

Mina Rafla
  • Fonction : Auteur
  • PersonId : 1167826
Nicolas Voisine
  • Fonction : Auteur
  • PersonId : 1167827

Résumé

Uplift modeling aims to estimate the incremental impact of a treatment, such as a marketing campaign or a drug, on an individual's behavior. These approaches are very useful in several applications such as personalized medicine and advertising, as it allows targeting the specic proportion of a population on which the treatment will have the greatest impact. Uplift modeling is a challenging task because data are partially known (for an individual, responses to alternative treatments cannot be observed). In this paper, we present a new tree algorithm named UB-DT designed for uplift modeling. We propose a Bayesian evaluation criterion for uplift decision trees T by dening the posterior probability of T given uplift data. We transform the learning problem into an optimization one to search for the uplift tree model leading to the best evaluation of the criterion. A search algorithm is then presented as well as an extension for random forests. Large scale experiments on real and synthetic datasets show the eciency of our methods over other state-of-art uplift modeling approaches.
Fichier principal
Vignette du fichier
pakdd23uplift.pdf (791.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04173558 , version 1 (29-07-2023)

Identifiants

Citer

Mina Rafla, Nicolas Voisine, Bruno Crémilleux. Parameter-Free Bayesian Decision Trees for Uplift Modeling. 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2023), May 2023, Osaka, Japan. pp.309-321, ⟨10.1007/978-3-031-33377-4_24⟩. ⟨hal-04173558⟩
82 Consultations
103 Téléchargements

Altmetric

Partager

More