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Abstract. Uplift modeling aims to estimate the incremental impact of
a treatment, such as a marketing campaign or a drug, on an individual's
behavior. These approaches are very useful in several applications such as
personalized medicine and advertising, as it allows targeting the speci�c
proportion of a population on which the treatment will have the greatest
impact. Uplift modeling is a challenging task because data are partially
known (for an individual, responses to alternative treatments cannot be
observed). In this paper, we present a new tree algorithm named UB-DT
designed for uplift modeling. We propose a Bayesian evaluation criterion
for uplift decision trees T by de�ning the posterior probability of T given
uplift data. We transform the learning problem into an optimization one
to search for the uplift tree model leading to the best evaluation of the
criterion. A search algorithm is then presented as well as an extension for
random forests. Large scale experiments on real and synthetic datasets
show the e�ciency of our methods over other state-of-art uplift modeling
approaches.

Keywords: Uplift Modeling · Decision trees · Random Forests · Bayesian
methods · Machine Learning · Treatment E�ect Estimation

1 Introduction

Uplift modeling aims to estimate the incremental impact of a treatment, such as
a marketing campaign or a drug, on an individual's behavior. These approaches
are very useful in several applications such as personalized medicine and adver-
tising, as it allows targeting the speci�c proportion of a population on which the
treatment will have the greatest impact. Uplift estimation is based on groups of
people who have received di�erent treatments. A major di�culty is that data
are only partially known: it is impossible to know for an individual whether the
chosen treatment is optimal because their responses to alternative treatments
cannot be observed. Several works address challenges related to the uplift mod-
eling, among which uplift decision tree algorithms became widely used [15,17].

Despite their usefulness, current uplift decision tree methods have limitations
such as local splitting criteria. A split criterion decides whether to divide a
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terminal node. However these splits are independent to each other and a pruning
step is then used to ensure generalization and avoid over�tting. Moreover, these
methods require parameters to set. In this paper, we present UB-DT (Uplift
Bayesian Decision Tree) a parameter-free method for uplift decision tree based on
the Bayesian paradigm. Contrary to state-of-art uplift decision tree methods, we
de�ne a global criterion designed for an uplift decision tree. A major advantage
of a global tree criterion is it allows to get rid of the pruning step, since it acts
as a regularization to avoid over�tting. We transform the uplift tree learning
problem to an optimization problem according to the criterion. Then a search
algorithm is used to �nd the decision tree that optimizes the global criterion.
Moreover our approach is easily extended to random forests and we propose UB-
RF (Uplift Bayesian Random Forest). We evaluate both UB-DT and UB-RF
to state-of-art uplift modeling approaches through a benchmarking study.

This paper is organized as follows. Section 2 introduces an overview of uplift
modeling and related work. Section 3 presents UB-DT. We conduct experiments
in Section 4 and conclude in Section 5.

2 Context and literature overview

2.1 Uplift problem formulation

Uplift is a notion introduced by Radcli�e and Surry [11] and de�ned in Rubin's
causal inference models [14] as the Individual Treatment e�ect (ITE).

We now outline the notion of uplift and its modeling. Let X be a group of
N individuals indexed by i : 1 . . . N where each individual is described by a set
of variables K. Xi denotes the set of values of K for the individual i. Let Z be a
variable indicating whether or not an individual has received a treatment. Uplift
modeling is based on two groups: the individuals having received a treatment
(denoted Z = 1) and those without treatment (denoted Z = 0). Let Y be
the outcome variable (for instance, the purchase or not of a product). We note
Yi(Z = 1) the outcome of an individual i when he received a treatment and
Yi(Z = 0) his outcome without treatment. The uplift of an individual i, denoted
by τi, is de�ned as: τi = Yi(Z = 1)− Yi(Z = 0).

In practice, we will never observe both Yi(Z = 1) and Yi(Z = 0) for a same
individual and thus τi cannot be directly calculated. However, uplift can be
empirically estimated by considering two groups: a treatment group (individ-
ual with a treatment) and a control group (without treatment). The estimated
uplift of an individual i denoted by τ̂i is then computed by using the CATE
(Conditional Average Treatment E�ect)[14]:

CATE : τ̂i = E[Yi(Z = 1)|Xi]− E[Yi(Z = 0)|Xi] (1)

As the real value of τi cannot be observed, it is impossible to directly use machine
learning algorithms such as regression to infer a model to predict τi. The next
section describes how uplift is modeled in the literature.
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2.2 Related work

Uplift modeling approaches Uplift modeling approaches are divided into two
categories. The �rst one (called metalearners) is made up of methods that take
advantage of usual machine learning algorithms to estimate the CATE. One of
the most intuitive approaches is the two-model approach. It consists of �tting two
independent classi�cation models, one for the treated group and another for the
control group. The estimated uplift is then the di�erence between the estimations
of the two classi�cation models. While this approach is simple, intuitive and
allows the usage of any machine learning algorithm, it has also known weaknesses
with particular patterns [12]. The causal inference community has also proposed
other metalearners such as X-learner [8], R-Learner and DR-learner [7].

The second category is closer to our work. This category gathers tailored
methods for uplift modeling such as tree-based algorithms. Trees are built using
recursive partitioning to split the root node to child nodes according to a splitting
criterion. [15] de�nes a splitting criterion that compares the probability distri-
butions of the outcome variable in each of the treatment groups using weighted
divergence measures like the Kullback-Leibler (KL), the squared euclidean dis-
tance (ED) and the chi-squared divergence. [17] proposes the Contextual Treat-
ment Selection algorithm (CTS) where a splitting criterion directly maximizes a
performance measure called the expected performance. Causal machine learning
algorithms were also developed such as the Causal Trees algorithm [1] and the
Causal Forests [2].
Uplift tree splitting criterion and Bayesian approaches. Building an up-
lift tree requires to discretize variables to detect areas with homogeneous treat-
ment e�ects. The global criterion of UB-DT to select a variable on a node takes
advantage of on a univariate parameter-free Bayesian approach for density es-
timation through discretization called UMODL [13]. More precisely, UMODL
applies a Bayesian approach to select the most probable uplift discretization
model M given the data. This implies �nding the model M that maximizes the
posterior probability P (M |Data), hence maximizing P (M) × P (Data|M). Fi-
nally, a global criterion within the Bayesian framework for decision trees is given
in [16] but it does not deal with uplift.

3 UB-DT: uplift decision tree approach

UB-DT is made up of two ingredients: a global criterion C(T ) for a binary
uplift decision tree T and a tree search algorithm to �nd the most probable
optimal tree. We start by presenting the structure of an uplift tree model. Then
we describe the new global criterion for an uplift decision tree and the algorithm
to give the best tree. Finally we show how the approach is straightforwardly
extended to random forests.

3.1 Parameters of an uplift tree model T

We de�ne a binary uplift decision tree model T by its structure and the distri-
bution of instances and class values in this structure. The structure of T consists



4 M. Ra�a et al.

Fig. 1: Example of an uplift tree
model. Internal nodes are described
by the segmentation variable Xs and
the distribution of instances in each
of the two children {Nsi}. Leaf nodes
containing a treatment e�ect (i.e
Wl = 1) are described by the class
distribution for each treatment. This
applies to leaves 4, 5 and 7. Leaf
nodes containing no treatment e�ect
(i.e Wl = 0) are only described by
the class distribution (this is the case
of leaf 6).

of the set of internal nodes ST and the set of leaf nodes LT . The distribution of
the instances in this structure is described by the partition of the segmentation
variable Xs for each internal node s, the class frequency in each leaf node where
there is no treatment e�ect, and the class frequency on each treatment in the
leaf nodes with a treatment e�ect. More precisely, T is de�ned by:

• the subset of variables KT used by model T . This includes the number of the
selected variables KT and their choice among a set of K variables provided
in a dataset, we note K = |K|.

• a binary variable In indicating the choice of whether each node n is an
internal node (In = 1) or a leaf node (In = 0).

• the distribution of instances in each internal node s, which is described by
the segmentation variable Xs of the node s and how the instances of s are
distributed on its two child nodes.

• a binary variable Wl indicating for each leaf node l if there is a treatment
e�ect (Wl = 1) or not (Wl = 0). If Wl = 0, l is described by the distribution
of the output values {Nl.j.}1≤j≤J , where Nl.j. is the number of instances of
output value j in leaf l. If Wl = 1, l is described by the distribution of the
class values per treatment {Nl.jt}1≤j≤J,1≤t≤2, where Nl.jt is the number of
instances of output value j and treatment t in leaf l.

These parameters are automatically optimized by the search algorithm (pre-
sented in Section 3.4) and not �xed by the user. In the rest of the paper, the
following notations Ns., Nsi., Nl. and Nl..t will additionally be used to respec-
tively designate the number of instances in node s, in the ith child of node s, in
the leaf l and treatment t in leaf l.

3.2 Uplift tree evaluation criterion

We now presents the new global criterion C(T ) which is an uplift tree model eval-
uation criterion. UB-DT applies a Bayesian approach to select the most prob-
able uplift tree model T that maximizes the posterior probability P (T |Data).
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This is equivalent to maximizing the product of the prior and the likelihood i.e.
P (T ) × P (Data|T ). Taking the negative log turns the maximization problem
into a minimization one: C(T ) = − log (P (T )× P (Data|T )), C(T ) is the cost
of the uplift tree model T . T is optimal if C(T ) is minimal. By exploiting the
hierarchy of the presented uplift tree parameters and assuming a uniform prior,
we express C(T ) as follows (cf. Eq. 2):

C(T ) = log(K + 1) + log

(
K +KT − 1

KT

)
︸ ︷︷ ︸

Variable selection

+
∑

s∈STn

log 2 + logKT + log(Ns. + 1)

︸ ︷︷ ︸
Prior of internal nodes

+
∑
l∈LT

log 2

︸ ︷︷ ︸
Treatment e�ect W

+
∑
l∈LT

log 2 +
∑
l∈LT

(1−Wl) log

(
Nl. + J − 1

J − 1

)
+
∑
l∈LT

Wl

∑
t

log

(
Nl..t + J − 1

J − 1

)
︸ ︷︷ ︸

Prior of leaf nodes

+
∑
l∈LT

(1−Wl) log
Nl.!

Nl.1.!Nl.2.! . . . Nl.J.!
+
∑
l∈LT

Wl

∑
t

log
Nl..t!

Nl.1t!..Nl.Jt!︸ ︷︷ ︸
Tree Likelihood

(2)

The next section demonstrates Eq. 2.

3.3 C(T ): proof of Equation 2

We express the prior and the likelihood of a tree model, resp. P (T ) and P (Data|T )
according to the hierarchy of the uplift tree parameters. Assuming the indepen-
dence between all the nodes, the prior probability of an uplift decision tree is
thus de�ned as:

P (T ) = P (KT )×∏
s∈ST

P (Is)P (Xs | KT )P (Nsi. | KT , Xs, Ns., Is)×

P ({Wl})×
∏
l∈LT

P (Il)

[
(1−Wl)× p ({Nl.j} | KT , Nl.) +Wl ×

∏
t

P ({Nl.jt} | KT , Nl..t)

]
(3)

The �rst line is the prior probability of the variable selection, the second line
the prior of internal nodes and the third line the prior of the leaf nodes.

Variable selection probability. A hierarichal prior is chosen: �rst the choice
of the number of selected variables KT , then the choice of the subset KT among
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K variables. By using a uniform prior the number KT can have any value be-
tween 0 and K in an equiprobable manner. For the choice of the subset KT , we
assume that every subset has the same probability. Then the prior of the variable
selection can be de�ned as:

P (KT ) =
1

K + 1

1(
K +KT − 1

KT

)

Prior of internal nodes. Each node can either be an internal node or a leaf
node with equal probability. This implies that: P (Is) =

1
2

The choice of the segmentation variable is equiprobable between 1 and KT .
We obtain:

P (Xs|KT ) =
1

KT

All splits of an internal node s to two intervals are equiprobable. We then obtain:

P (Nsi. | KT , Xs, Ns., Is) =
1

Ns + 1

Prior of leaf nodes. Similar to the prior of internal nodes, each node can
either be internal or a leaf node with equal probability leading to P (Il) = 1

2 .
For each leaf node, we assume that a treatment can have an e�ect or not, with
equal probability, we get:

P ({Wl}) =
∏
l

1

2

In the case of a leaf node l where there is not e�ect of the treatment (Wl = 0),
UB-DT describes one unique distribution of the class variable. Assuming that
each of the class distributions is equiprobable, we end up also with a combina-
torial problem:

P ({Nl.j} | KT , Nl.) =
1(

Nl. + J − 1
J − 1

)
In a leaf node with an e�ect of the treatment (Wi = 1), UB-DT describes two
distributions of the outcome variable, with and without the treatment. Given a
leaf l and a treatment t, we know the number of instances Nl..t Assuming that
each of the distributions of class values is equiprobable, we get:

P ({Nl.jt} | KT , Nl..t) =
1(

Nl..t + J − 1
J − 1

)
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Tree likelihood. After de�ning the tree's prior probability, we establish the
likelihood probability of the data given the tree model. The class distributions
depend only of the leaf nodes. For each multinomial distribution of the outcome
variable (a single or two distinct distributions per leaf depending on whether
the treatement has an e�ect or not), we assume that all possible observed data
Dl consistent with the multinomial model are equiprobable. Using multinomial
terms, we end up with:

P (Data | T ) =
∏
l∈L

P (Dl|M)

∏
l∈L

[
(1−Wl)×

1

Nl.!/Nl.1.!Nl.2.! . . . Nl.J.!
+Wl ×

∏
t

1

(Nl..t!/Ni.1t!..Ni.Jt!)

]
(4)

By combining the prior and the likelihood (resp. Eq. 3 and 4) and by taking
their negative log, we obtain C(T ) and thus Eq. 2 is proved.

3.4 Search algorithm

The induction of an optimal uplift decision tree from a data set is NP-hard [10].
Thus, learning the optimal decision tree requires exhaustive search and is limited
to very small data sets. As a result, heuristic methods are required to build
uplift decision trees. Algorithm 1 (see below) selects the best tree according to
the global criterion. Algorithm 1 chooses a split among all possible splits in all
terminal nodes only if it minimizes the global criterion of the tree. The algorithm
continues as long as the global criterion is improved. Since a decision tree is a
partitioning of the feature space, a prediction for a future instance is then the
average uplift in its corresponding leaf. This algorithm is deterministic and thus
it always leads to the same local optimum. Experiments show the quality of the
building trees.

3.5 UB-RF

UB-DT is easily extended to random forests. For that purpose, a split is ran-
domly chosen among all possible splits that improve the global criterion. The
number of trees is set by the analyst and the prediction of a forest is the average
predictions of all the trees.

4 Experiments

We experimentally evaluate the quality of UB-DT as an uplift estimator and
compare UB-DT and UB-RF versus state-of-art uplift modeling approaches 3.

3 Code, datasets and complementary results are at https://github.com/MinaWagdi/
UB-DT

https://github.com/MinaWagdi/UB-DT
https://github.com/MinaWagdi/UB-DT
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We use the following state-of-art methods: (1) metalearners: two-model ap-
proach (2M), X-Learner and R-Learner, each with Xgboost; (2) uplift trees:
CTS-DT,KL-DT, Chi-DT, ED-DT; (3) uplift random forests: CTS-RF,KL-RF,
Chi-RF, ED-RF [15]; (4) and causal forests (all forest methods were used with
10 trees).

4.1 Is UB-DT a good uplift estimator?

To be able to measure the estimated uplift we need to know the real uplift
and therefore we use synthetic data. Fig. 2 depicts two synthetic uplift patterns
where P (Y = 1|X,T = 1) and P (Y = 1|X,T = 0) are identi�ed for each
instance. The grid pattern can be considered as a tree-friendly pattern whereas
the continuous pattern is much more di�cult. We generated several datasets
according to these patterns with several di�erent numbers of instances (also
called data size) ranging from 100 to 100,000 instances. Uplift models were built
using 10-fold strati�ed cross validation and the RMSE (Root Mean Squared
Error) was used to evaluate the performance of the models.

Results: Fig. 3 gives the RMSE for the two synthetic patterns according to the
data size for di�erent uplift methods. We see that UB-DT is a good estima-
tor for uplift. With UB-DT, RMSE decreases and converges to zero when data
sizes increase both for the grid and continuous patterns. This is the expected
behavior of a good uplift estimator. This also means that UB-DT, thanks to its
global criterion, avoids over�tting of uplift trees. The two-model approach with
decision trees also shows competitive performance. UB-DT clearly outperforms
the other tree-based methods, these latter having similar performances. With
the continuous pattern, KL-DT, Chi-DT, ED-DT and CTS-DT approaches have

Algorithm 1: UB-DT algorithm

input : T the root tree
output: the tree T ∗ which minimizes the proposed criterion
T ∗ ← T
while C(T ∗) decreases:

T ′ ← T ∗

for leaf l in LT :
for X in K:

Get the best Split SX(l) according to UMODL
TX ← T ∗ + SX(l)
if C(TX)<C(T ′):

T ′ ← TX

if C(T ′)<C(T ∗):
T ∗ ← T ′

Prediction: The output of a tree is a partition of the feature space. The
predicted uplift for each instance is the average uplift of its leaf node.
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(a) Grid pattern (b) Continuous pattern

Fig. 2: Uplift for 2 synthetic patterns. Fig. 2a (grid pattern): uplift values for
each cell. Fig. 2b (continuous pattern): uplift values are P (Y |T = 0, x1, x2) =
1− (x1 + x2)/20 while P (Y |T = 1, x1, x2) = (x1 + x2)/20.

(a) Grid Pattern (b) Continuous Pattern

Fig. 3: The RMSE of tree-based approaches according to data size

lower performances (their RMSE are around 0.5). To avoid a cluttered visuali-
sation, their performances are not included in Fig. 3b.

4.2 UB-DT and UB-RF versus state of the art methods

Datasets. We conducted experiments on 8 real and synthetic datasets widely
used in the uplift modeling community: (1) Hillstrom4 (a classical dataset for

4 http://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.

html

http://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html
http://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html
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Dataset No. Rows No. Columns Treatment ratio Outcome Ratio Average Uplift Treatment variable Outcome variable

Hillstrom-m 42,613 10 0.5 0.145 0.076 'mens' 'visit'

Hillstrom-w 42,693 10 0.5 0.128 0.045 'womens' 'visit'

Hillstrom-mw 64,000 10 0.67 0.146 0.06 'mens' & 'womens' 'visit'

Gerber-N 229,444 16 0.166 0.31 0.081 'neighbour' 'voted'

Geber-S 229,461 16 0.166 0.304 0.04 'self ' 'voted'

Starbucks 84,534 9 0.5 0.012 0.009 'promotion' 'purchase'

Information 20,000 69 0.5 0.2 0.0018 'treatment' 'purchase'

Bank-tel 15,926 17 0.18 0.05 0.09 'telephone' 'Y'

Bank-cell 42,305 17 0.6 0.115 0.11 'cellular' 'Y'

Bank-tel-cel 45,211 17 0.71 0.116 0.107 'telephone'&'cellular' 'Y'

Megafon 600,000 52 0.5 0.2 -0.18 'treatment' 'conversion'

Criteo-v 13,979,592 12 0.85 0.047 0.68 'treatment' 'visit'

Criteo-c 13,979,592 12 0.85 0.0029 0.37 'treatment' 'conversion'

RHC 5735 62 0.38 0.35 -0.05 'RHC' 'swang1'

Table 1: Summary of datasets speci�cations

uplift modeling with data of customers who either received emails featuring
men's/ women's products, or received no emails); (2) Criteo [5] (a marketing
dataset for uplift modeling), (3) Bank [9] (a marketing campaign conducted by
a bank), (4) Information5 (a marketing dataset in the insurance domain, a part
of the Information R package); (5) Megafon6 (a synthetic dataset generated by a
telecom company); (6) Starbucks7 (an advertising promotion tested to improve
customers purchases); (7) Gerber [6] (a policy-relevant dataset used to study
the e�ect of social pressure on voter turnout); (8) Right Heart Catheterization
(RHC) [3] (a real dataset from the medical domain, the treatment indicates
whether a patient received a RHC and the outcome is whether the patient died
at any time up to 180 days after admission to the study).

Each dataset was used with di�erent settings of treatment and outcome vari-
ables. For all datasets, each treatment and outcome variables are binary. Table 1
provides the most relevant speci�cations about the data sets.

Results. We evaluate the uplift models by using the qini metric [4]. Qini is
a variant of the Gini coe�cient. Its values are in [−1, 1], the higher the value,
the larger the impact of the predicted optimal treatment. Fig. 4a (resp. Fig. 4b)
shows the overall average ranking of tree based methods (resp. meta-learners and
forest-based methods) according to its qini performance against each dataset.
Compared to other tree-based methods and to the two-model approach with
decision trees, Figure 4a shows that UB-DT achieves the best performance.
Table 2 reports the results of the experiment for the qini metric. This table
shows that UB-DT is also a good estimator of the uplift on real data. Figure 4b
shows that both UB-RF and 2M have the best rank. Table 3 indicates that
the random forest strategy improves the performance of the uplift models (qini
values are higher with UB-RF than UB-DT). UB-RF has the best performance
on 4 out the 14 experiments.

5 https://cran.r-project.org/web/packages/Information/index.html
6 https://ods.ai/tracks/df21-megafon/competitions/megafon-df21-comp/data
7 https://github.com/joshxinjie/Data_Scientist_Nanodegree/tree/master/

starbucks_portfolio_exercisejoshxinjie

https://cran.r-project.org/web/packages/Information/index.html
https://ods.ai/tracks/df21-megafon/competitions/megafon-df21-comp/data
https://github.com/joshxinjie/Data_Scientist_Nanodegree/tree/master/starbucks_portfolio_exercise
https://github.com/joshxinjie/Data_Scientist_Nanodegree/tree/master/starbucks_portfolio_exercise
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2M_DT KL_DT Chi_DT ED_DT CTS_DT UB-DT

Dataset

Hillstrom-m 0.3(1.0) 1.1(1.9) 1.0(1.9) 0.0(1.4) 0.2(1.0) 1.6(1.6)
Hillstrom-w 0.8(1.6) 5.2(2.5) 5.2(2.6) 6.4(1.2) -0.4(2.0) 4.8(2.3)
Hillstrom-mw -0.6(0.8) -0.1(1.2) -0.8(1.1) 4.4(2.7) -0.0(1.0) -0.4(1.4)
Gerber-n 5.6(0.8) 1.3(0.8) 1.2(0.8) 1.1(0.6) 1.3(0.8) 1.9(0.6)
Gerber-s 5.5(1.1) 0.4(0.5) 0.4(0.6) 0.5(0.3) 0.4(0.4) 0.8(0.6)
Criteo-c 8.0(1.5) 4.1(1.4) 4.8(1.5) 15.2(0.3) 1.7(0.3) 13.7(3.2)
Criteo-v 0.4(0.3) -1.2(0.2) -1.1(0.3) -1.3(0.3) 0.4(1.1) 3.6(1.2)
Megafon 5.1(0.6) 4.5(0.9) 4.7(0.9) 4.7(0.9) 4.9(0.8) 7.8(0.8)
Bank-tel 5.4(7.6) -12.5(2.8) -10.8(7.0) -10.2(7.8) -12.8(2.9) 12.8(8.0)
Bank-cell 11.1(3.0) -2.0(1.5) -1.4(2.5) -2.2(1.5) -3.7(1.5) 38.4(3.4)
Bank-tel-cell 10.3(1.6) -1.9(1.2) -1.2(2.1) -1.8(1.2) -3.4(1.4) 37.1(2.6)
Information 4.6(3.4) -6.3(2.8) -6.3(2.8) -2.8(1.5) -5.4(1.5) 11.8(2.4)
Starbucks 1.4(1.4) 20.1(3.0) 18.3(3.4) 19.9(3.2) 13.9(3.9) 20.2(3.5)
RHC 12.8(1.9) 18.4(3.8) 19.9(4.2) 18.4(3.8) 16.7(2.5) 20.7(5.0)

Table 2: Average qini values and standard deviation (multiplied by 100). The
best qini value for each dataset is marked in bold.

XLearner RLearner DR 2M KL_RF Chi_RF ED_RF CTS_RF UB-RF CausalForest
Dataset

Hillstrom-m 0.3(2.3) 0.3(1.8) 1.2(1.6) 0.7(2.3) -0.0(2.1) -0.9(1.5) 0.7(1.5) 1.1(1.9) 1.8(1.6) -0.2(1.6)
Hillstrom-w 6.2(1.7) 6.2(1.4) 6.0(1.4) 4.9(1.1) 6.2(1.1) 7.0(1.0) 6.2(1.1) 5.7(1.3) 6.7(1.1) 2.1(1.9)
Hillstrom-mw 3.7(2.3) 3.9(2.7) 3.8(2.8) 3.0(2.0) 3.0(1.3) 2.8(1.5) 3.6(2.5) 2.3(2.4) 3.1(1.7) 0.1(1.7)
Gerber-n 3.7(0.6) 1.9(0.7) 0.5(0.9) 3.1(0.6) 1.8(1.0) 2.1(1.1) 1.9(0.5) 1.4(1.0) 2.7(0.7) 2.9(1.0)
Gerber-s 2.4(0.9) 1.7(0.7) 0.6(0.9) 2.2(0.8) 1.3(1.0) 1.4(0.6) 1.6(0.8) 1.4(0.7) 1.8(0.8) 3.1(0.5)
Criteo-c 22.3(1.8) 19.4(1.0) 20.0(0.6) 19.5(1.6) 14.6(3.5) 12.4(4.3) 21.1(2.3) 7.3(3.9) 18.7(1.5) 10.9(2.4)
Criteo-v 0.3(0.8) 5.3(0.5) 4.8(1.5) 3.9(0.5) 5.4(1.2) 4.8(1.7) 6.1(1.0) 2.4(0.8) 5.7(0.7) 0.4(0.4)
Megafon 18.2(0.6) 2.6(0.5) 2.2(0.9) 16.6(0.9) 11.2(0.7) 11.0(1.2) 10.8(0.8) 9.2(1.1) 12.8(1.0) 9.7(0.7)
Bank-tel 14.5(7.6) 2.8(8.8) 16.0(9.0) 21.1(11.6) -15.5(6.3) -6.1(12.6) -15.8(5.6) -18.7(2.9) 26.7(7.2) 25.4(5.3)
Bank-cell 18.8(4.7) 23.3(3.6) 17.4(6.5) 31.0(3.9) 0.4(2.3) 1.5(2.5) -2.5(2.6) -1.0(1.9) 45.5(2.7) 20.8(2.6)
Bank-tel-cell 16.2(5.6) 23.8(2.5) 17.0(3.4) 30.5(2.7) 1.4(3.4) -0.4(5.7) -1.7(3.1) -0.5(2.3) 46.1(2.1) 23.5(2.9)
Information 14.9(3.3) 10.0(3.1) 4.1(2.3) 13.7(4.1) 9.6(2.0) 9.7(3.1) 11.2(2.9) 10.6(2.9) 12.0(3.1) 10.5(3.2)
Starbucks 22.3(4.5) 22.4(3.9) 22.4(3.7) 22.7(4.1) 22.4(2.1) 21.4(3.4) 23.4(3.2) 20.8(3.1) 20.2(3.3) 8.1(3.7)
RHC 32.4(3.5) 31.3(4.3) 30.3(5.0) 34.6(4.3) 29.6(4.2) 29.7(5.0) 30.0(4.1) 29.1(3.7) 27.2(5.0) 27.6(4.5)

Table 3: Average qini values and standard deviation (multiplied by 100) across
datasets and uplift approaches. In bold, the best value for each dataset

(a) tree-based methods (b) meta-learners and forest-based methods

Fig. 4: Overall average ranking of the uplift approaches
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5 Conclusion and perspectives

In this paper, we presented a new parameter-free method called UB-DT for up-
lift decision trees. We have designed a Bayesian approach to select the most prob-
able uplift tree model T that maximizes the posterior probability P (T |Data).
Contrary to state-of-art uplift decision tree approaches, UB-DT is character-
ized by a global criterion to build a tree, so the splits in one node depend on
the splits in the other nodes. This approach avoids over�tting and the need for a
pruning step. A search algorithm �nds the tree that optimizes this criterion. We
showed that our approach is easily extended to random forests and we de�ned
UB-RF. Evaluations on real and synthetic data sets show that UB-DT is a
good uplift estimator and our tree and forests methods perform competitively
with state-of-art uplift modeling approaches including non tree methods.

This work opens several perspectives. Studies on general trees (with more
than two child nodes) is promising. In addition, studies with multiple treatments
are still open work in uplift modeling. Moreover, the search algorithm leads to a
local optimum and may create under-�tted uplift trees. To go above this horizon
e�ect, it would be interesting to use a post-pruning algorithm [16].
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