Relaxation approximation of the Euler equations - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Analysis and Applications Année : 2008

Relaxation approximation of the Euler equations

Résumé

The aim of this paper is to show how solutions to the one-dimensional compressible Euler equations can be approximated by solutions to an enlarged hyperbolic system with a strong relaxation term. The enlarged hyperbolic system is linearly degenerate and is therefore suitable to build an efficient approximate Riemann solver. From a theoretical point of view, the convergence of solutions to the enlarged system towards solutions to the Euler equations is proved for local in time smooth solutions. We also show that arbitrarily large shock waves for the Euler equations admit smooth shock profiles for the enlarged relaxation system. In the end, we illustrate these results of convergence by proposing a numerical procedure to solve the enlarged hyperbolic system. We test it on various cases.
Fichier principal
Vignette du fichier
CC.pdf (468.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01838843 , version 1 (13-07-2018)

Identifiants

Citer

Christophe Chalons, Jean-François Coulombel. Relaxation approximation of the Euler equations. Journal of Mathematical Analysis and Applications, 2008, 348 (2), pp.872 - 893. ⟨10.1016/j.jmaa.2008.07.034⟩. ⟨hal-01838843⟩
183 Consultations
276 Téléchargements

Altmetric

Partager

More